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hapire Abstra
tWe dis
uss basi
 predi
tion theory and its impa
t on 
lassi�
ation su

ess evaluation,impli
ations for learning algorithm design, and uses in learning algorithm exe
ution. Thistutorial is meant to be a 
omprehensive 
ompilation of results whi
h are both theoreti
allyrigorous and quantitatively useful.There are two important impli
ations of the results presented here. The �rst is that
ommon pra
ti
es for reporting results in 
lassi�
ation should 
hange to use the test setbound. The se
ond is that train set bounds 
an sometimes be used to dire
tly motivatelearning algorithms.Keywords: sample 
omplexity bounds, 
lassi�
ation, quantitative bounds1. Introdu
tionClassi�ers are fun
tions whi
h partition a set into two 
lasses (for example, the set of rainydays and the set of sunny days). Classi�ers appear to be the most simple nontrivial de
isionmaking element so their study often has impli
ations for other learning systems. Classi�ersare su�
iently 
omplex that many phenomena observed in ma
hine learning (theoreti
allyor experimentally) 
an be observed in the 
lassi�
ation setting. Yet, 
lassi�ers are simpleenough to make their analysis easy to understand. This 
ombination of su�
ient yet minimal
omplexity for 
apturing phenomena makes the study of 
lassi�ers espe
ially fruitful.The goal of this paper is an introdu
tion to the theory of predi
tion for 
lassi�
ation.Here �predi
tion theory� means statements about the future error rate of learned 
lassi�ers.A typi
al statement has the form, �With probability 1−δ over an i.i.d. draw of some sample,the expe
ted future error rate of a 
lassi�er is bounded by f(δ, error rate on sample)�. Thesestatements are 
on�den
e intervals on the error rate of a learned 
lassi�er. Many of theseresults have been presented elsewhere, although the style, tightness, and generality of thepresentation are often new here (and parti
ularly oriented towards pra
ti
al use). The fo
usof this tutorial is on those results whi
h are both theoreti
ally sound and pra
ti
ally useful.There are several important aspe
ts of learning whi
h the theory here 
asts light on.Perhaps the most important of these is the problem of performan
e reporting for 
lassi�ers.Many people use some form of empiri
al varian
e to estimate upper and lower bounds. Thisis an error-prone pra
ti
e, and the test set bound in Se
tion 3 implies a better method bynearly any metri
. Hopefully, this will be
ome 
ommon pra
ti
e.
©2005 John Langford.



LangfordAfter dis
ussing the test set bound we 
over the O

am's Razor bound, the simplesttrain set bound, whi
h explains (and quanti�es) the 
ommon phenomenon of over�tting.We also prove that the O

am's Razor bound 
annot be improved without in
orporatingextra information and apply the bound to de
ision trees.Next, we dis
uss two train set bounds, the PAC-Bayes bound and the Sample Compres-sion bound, whi
h have proved to give pra
ti
al results for more general 
lassi�ers, su
has Support Ve
tor Ma
hines and Neural Networks. All of the results here should be easilyapproa
hable and understandable. The proofs are simple, and examples are given. Pointersto related work are also given.There are some 
aveats about the s
ope of this do
ument.1. All of the results presented here fall in the realm of 
lassi
al statisti
s. In parti
ular, allrandomizations are over draws of the data, and our results have the form of 
on�den
eintervals.2. This tutorial is not 
omprehensive for predi
tion theory in general (whi
h would beextremely di�
ult due to the s
ope of the subje
t). We only fo
us on those resultsyielding quanti�ably interesting performan
e.3. In parti
ular, other nonquantitative uses of bounds (su
h as providing indire
t moti-vations for learning algorithms via 
onstant �tting) do exist. We do not fo
us on thoseuses here.The layout of this do
ument is as follows:
• Se
tion 2 presents the formal model.
• Se
tion 3 presents the test set bound.
• Se
tion 4 presents the O

am's Razor bound.
• Se
tion 5 presents the PAC-Bayes bound.
• Se
tion 6 presents the Sample Compression bound.The formal model and test set bound must be understood in order to appre
iate all laterresults. There is no parti
ular dependen
y between the various train set bounds we present.2. Formal ModelThere are many somewhat arbitrary 
hoi
es of learning model. The one we use 
an (at best)be motivated by its simpli
ity. Other models su
h as the online learning model (Kivinenand Warmuth, 1997), PAC learning (Valiant, 1984), and the uniform 
onvergen
e model(Vapnik and Chervonenkis, 1971) di�er in formulation, generality, and in the s
ope of ad-dressable questions. The strongest motivation for studying the predi
tion theory model hereis simpli
ity and 
orresponding generality of results. The appendix dis
usses the 
onne
tionsbetween various models. 212



Pra
ti
al Predi
tion Theory for Classifi
ation2.1 Basi
 quantitiesWe are 
on
erned with a learning model in whi
h examples of (input, output) pairs 
omeindependently from some unknown distribution (similar to (Shawe-Taylor et al., 1998) andmany other papers). The goal is to �nd a fun
tion 
apable of predi
ting the output giventhe input. There are several mathemati
al obje
ts we work with.Obje
t Des
ription
X The (arbitrary) spa
e of the input to a 
lassi�er

Y = {−1, 1} The output of a 
lassi�
ation.
D An (unknown) distribution over X × Y

S A sequen
e of examples drawn independently from D.
m = |S| the number of examples
c A fun
tion mapping X to YThere are several distin
tions between this model and other (perhaps more familiar)models. There is no mention of a 
lassi�er spa
e, be
ause the results do not depend upona 
lassi�er spa
e. Also, the notion of a distribution on X × Y is stri
tly more general thanthe �target 
on
ept� model whi
h assumes that there exists some fun
tion f : X → Y usedto generate the label (Valiant, 1984). In parti
ular we 
an model noisy learning problemswhi
h do not have a parti
ular Y value for ea
h X value. This generalization is essentially�free� in the sense that it does not add to the 
omplexity of presenting the results.It is worth noting that the only unveri�able assumption we make is that examples aredrawn independently from D. The strength of all the results whi
h follow rests upon the
orre
tness of this assumption.Sometimes, we de
orate these obje
ts with labels like Strain (a train set1) or Stest (atest set). These de
orations should always be 
lear.Example 1 Weather predi
tion: Will it rain today or not? In this 
ase X = barometri
pressure, observations of 
loud 
over or other sensory input and Y = 0 if the predi
tion is�no rain� and 1 otherwise. The distribution D is over sensory inputs and out
omes. Thesample set S, might 
onsist of m = 100 (observation, out
ome) pairs su
h as (pressure low,
loudy, rain), (pressure high, 
loudy, not rain), et
. A 
lassi�er, c, is any fun
tion whi
hpredi
ts �rain� or �not rain� based upon the observation.Note that the independen
e assumption here is not perfe
tly satis�ed although it seemsto be a reasonable approximation for well-separated days. In any appli
ation of this theory,it must be 
arefully judged whether the independen
e assumption holds or not.2.2 Derived quantitiesThere are several derived quantities whi
h the results are stated in terms of.1. Throughout this tutorial we use the word 'set' when 'sequen
e' is what is a
tually meant. This usagepattern is histori
al. 213



LangfordDe�nition 2.1 (True Error) The true error cD of a 
lassi�er c is de�ned as the probabilitythat the 
lassi�er errs:
cD ≡ Pr

(x,y)∼D
(c(x) 6= y)under draws from the distribution D.The true error is sometimes 
alled the �generalization error�. Unfortunately, the true error isnot an observable quantity in our model be
ause the distribution D is unknown. However,there is a related quantity whi
h is observable.De�nition 2.2 (Empiri
al Error) Given a sample set S, the empiri
al error, ĉS is theobserved number of errors:

ĉS ≡ m Pr
(x,y)∼S

(c(x) 6= y) =

m
∑

i=1

I(c(xi) 6= yi)where I() is a fun
tion whi
h maps �true� to 1 and �false� to 0. Also, Pr(x,y)∼S(...) is aprobability taken with respe
t to the uniform distribution over the set of examples, S.The empiri
al error is sometimes 
alled the �training error�, �test error�, or �observed error�depending on whether it is the error on a training set, test set, or a more general set.Example 2 (
ontinued) The 
lassi�er c whi
h always predi
ts �not rain� might have anempiri
al error of 38 out of 100 examples and an unknown true error rate (whi
h might infa
t be 0.5).2.3 Addressable questionsGiven the true error cD of a 
lassi�er c we 
an pre
isely des
ribe the distribution of su

essand failure on future examples drawn a

ording to D. This quantity is derived from theunknown distribution D, so our e�ort is dire
ted toward upper and lower bounding the valueof cD for a 
lassi�er c.The variations in all of the bounds that we present are related to the method of 
hoosinga 
lassi�er c. We 
over two types of bounds:1. Test: Use examples in a test set whi
h were not used in pi
king c.2. Train: Use examples for both 
hoosing c and evaluating c.These methods are addressed in the next two se
tions.It is worth noting that one question that 
annot be addressed in this model is �Can learn-ing o

ur for my problem?� Extra assumptions (Valiant, 1984) (Vapnik and Chervonenkis,1971) are inherently ne
essary. 214
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Figure 1: A depi
tion of the Binomial distribution. The 
umulative of the Binomial is thearea under the 
urve up to some point on the horizontal axis.3. The Test Set MethodThe simplest bound arises for the 
lassi
al te
hnique of using m fresh examples to evaluatea 
lassi�er. In a statisti
al setting, this 
an be viewed as 
omputing a 
on�den
e intervalfor the binomial distribution as in (Clopper and Pearson, 1934). This se
tion is organizedinto two subse
tions:
• Subse
tion 3.1 presents the basi
 upper bound on the true error rate, handy approxi-mations, and a lower bound.
• Subse
tion 3.2 dis
usses the impli
ations of the test set bound on error reportingpra
ti
e. A better method for error reporting is applied to several datasets and theresults are shown.3.1 The BoundBefore stating the bound, we note a few basi
 observations whi
h make the results less sur-prising. The prin
ipal observable quantity is the empiri
al error ĉS of a 
lassi�er. What isthe distribution of the empiri
al error for a �xed 
lassi�er? For ea
h example, our indepen-den
e assumption implies the probability that the 
lassi�er makes an error is given by thetrue error, cD. This 
an be modeled by a biased 
oin �ip: heads if you are right and tails ifyou are wrong. 215



LangfordWhat is the probability of observing k errors (heads) out of m examples (
oin �ips)?This is a very familiar distribution in statisti
s 
alled the Binomial and so it should not besurprising that the bounds presented here are fundamentally dependent upon the 
umulativedistribution of a Binomial. For the following de�nition B(p) is the distribution of a Bernoulli
oin �ip.De�nition 3.1 (Binomial Tail Distribution)Bin (m,k, cD) ≡ Pr
Z1,...Zm∼B(cD)m

(

m
∑

i=1

Zi ≤ k

)

=

k
∑

j=0

(

m

j

)

c
j
D(1 − cD)m−j= the probability that m examples (
oins) with error rate (bias) cD produ
e k or fewer errors(heads).A depi
tion of the Binomial distribution is given in Figure 1.For the learning problem, we always 
hoose a bias of cD and Zi = 1 when the 
lassi�er
ommits an error (and 0 otherwise). With these de�nitions, we 
an interpret the Binomialtail as the probability of an empiri
al error less than or equal to k.Sin
e we are interested in 
al
ulating a bound on the true error given a 
on�den
e δ,and an empiri
al error ĉS , it is handy to de�ne the inversion of a Binomial tail.De�nition 3.2 (Binomial Tail Inversion)Bin (m,k, δ) ≡ max

p
{p : Bin (m,k, p) ≥ δ}= the largest true error su
h that the probability of observing k or fewer �heads� is at least

δ.For intuition's sake, the quantity Bin (m,k, δ) obeys the following inequalities (some of whi
hwe prove later).1. Bin (m,k, δ) ≤ k
m +

√

ln 1
δ

2m2. Bin (m,k, δ) ≤ k
m +

√

2 k
m

ln 1
δ

m +
2 ln 1

δ

m3. Bin (m, 0, δ) ≤
ln 1

δ

mWith these de�nitions �nished, the results are all very simple statements.Theorem 3.3 (Test Set Bound) For all D, for all 
lassi�ers c, for all δ ∈ (0, 1]

Pr
S∼Dm

(

cD ≤ Bin (m, ĉS , δ)
)

≥ 1 − δ216
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Figure 2: A graphi
al depi
tion of the test set bound. The �rst graph depi
ts several possibleBinomials given their true error rates. The se
ond depi
ts several Binomials, ea
hwith a tail 
ut. The third �gure shows the Binomials 
onsistent with the tail 
utand observed test error. The worst 
ase over all true error rates is the 
onsistentBinomial with the largest bias.Note that m in this equation is mtest = |Stest|, the size of the test set.Proof (pi
torially in 2) The proof is just a simple identi�
ation with the Binomial. Forany distribution over (x, y) pairs and any 
lassi�er c, there exists some probability cD thatthe 
lassi�er predi
ts in
orre
tly. We 
an regard this event as a 
oin �ip with bias cD. Sin
eea
h example is pi
ked independently, the distribution of the empiri
al error is a Binomialdistribution.Whatever our true error cD is, with probability 1− δ the observation ĉS will not fall intoa tail of size δ. Assuming (
orre
tly with probability 1− δ) that the empiri
al error is not inthe Binomial tail, we 
an 
onstrain (and therefore bound) the value of the true error cD.The test set bound is, essentially, perfe
tly tight. For any 
lassi�er with a su�
ientlylarge true error, the bound is violated exa
tly a δ portion of the time.217
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Figure 3: A graph suggesting e−ǫm ≥ (1 − ǫ)m.3.1.1 ApproximationsThere are several immediate 
orollaries of the test set bound (3.3) whi
h are more 
onvenientwhen a 
omputer is not handy. The �rst 
orollary applies to the limited �realizable� settingwhere you happen to observe 0 test errors.Corollary 3.4 (Realizable Test Set Bound) For all D, For all 
lassi�ers c, for all δ ∈ (0, 1]

Pr
S∼Dm

(

ĉS = 0 ⇒ cD ≤
ln 1

δ

m

)

≥ 1 − δ.Proof Spe
ializing the test set bound (Theorem 3.3) to the zero empiri
al error 
ase, weget: Bin (m, 0, ǫ) = (1 − ǫ)m ≤ e−ǫm.Setting this equal to δ and solving for ǫ gives us the result. The last inequality 
an be mostsimply motivated by 
omparing graphs as in �gure 3.Approximations whi
h hold for arbitrary (nonzero) error rates rely upon the Cherno� boundwhi
h we state next, for 
ompleteness. For this bound (and it's later appli
ations) weoverload the de�nition of KL-divergen
e so it applies to two p, q ∈ [0, 1] variables.De�nition 3.5 (KL-divergen
e overload) KL+ (q||p) = q log q
p + (1 − q) log 1−q

1−p for p > qand 0 otherwise. 218



Pra
ti
al Predi
tion Theory for Classifi
ationLemma 3.6 (Relative Entropy Cherno� Bound)2 For k
m < p:Bin (m,k, p) ≤ e−mKL+( k
m
||p).Proof (Originally from (Cherno�, 1952). The proof here is based on (Seung)) For all λ > 0,we have:Bin (m,k, p) = Pr

Xm∼pm

(

m
∑

i=1

Xi ≤ k

)

= Pr
Xm∼pm

(

e−mλ 1
m

Pm
i=1 Xi ≥ e−mλ k

m

)

.Using Markov's inequality (X ≥ 0, EX = µ, ⇒ Pr(X ≥ δ) ≤ µ
δ ):

≤
EXm∼pme−λ

Pm
i=1 Xi

e−λk
.Using independen
e, we get:

= eλk
(

pe−λ + (1 − p)
)mand rewriting, we get:

= emf(λ)where f(λ) = λ k
m + ln

(

pe−λ + 1 − p
).

λ is a free parameter whi
h 
an be optimized to �nd the tightest possible bound. To�nd the optimal value, �nd λ∗ so that f ′(λ∗) = 0.
0 = f ′(λ∗) =

k

m
−

pe−λ∗

pe−λ∗ + 1 − p

⇒
k
m

p

(

pe−λ∗
+ 1 − p

)

= e−λ∗

⇒
k
m

p
(1 − p) =

(

1 −
k

m

)

e−λ∗

⇒ eλ∗
=

p
(

1 − k
m

)

k
m(1 − p)whi
h is valid for p > k

m . Using this, we get:
f(λ∗) =

k

m
ln

p
(

1 − k
m

)

k
m(1 − p)

+ ln

(

1 − p

1 − k
m

)

=
k

m
ln

p
k
m

+

(

1 −
k

m

)

ln

(

1 − p

1 − k
m

)

= −KL( k

m
||p

)

.Using the Cherno� bound, we 
an loosen the test set bound to a
hieve a more analyti
 form.2. The 
losely related Hoe�ding bound(Hoe�ding, 1963) makes the same statement for sums of [0, 1] randomvariables. 219



LangfordCorollary 3.7 (Agnosti
 Test Set Bound) For all D, for all 
lassi�ers c, for all δ ∈ (0, 1]

Pr
S∼Dm

(KL( ĉS

m
||cD

)

≤
ln 1

δ

m

)

≥ 1 − δ.Proof Loosening the test set bound (theorem 3.3) with the Cherno� approximation for
k
m < cD we get: Bin (m,k, cD) ≤ e−mKL( k

m
||cD).Setting this equal to δ, and solving for ǫ gives the result.The agnosti
 test set bound 
an be further loosened by bounding the value of KL(q||p).Corollary 3.8 (Agnosti
 Test Set Bound II) For all 
lassi�ers c, for all δ ∈ (0, 1]

Pr
S∼Dm



cD ≤
ĉS

m
+

√

ln 1
δ

2m



 ≥ 1 − δ.Proof Use the approximation:KL( k

m
||cD

)

≥ 2(cD −
k

m
)2with the Cherno� bound and Test set bounds to get the result.The di�eren
es between the agnosti
 and realizable 
ase are fundamentally related to thede
rease in the varian
e of a Binomial as the bias (i.e. true error) approa
hes 0. Note thatthis implies using the exa
t Binomial tail 
al
ulation 
an result in fun
tional (rather thanmerely 
onstant) improvements on the above 
orollary.3.1.2 A Test Set Lower BoundThe true error 
an be lower bounded using a symmetri
 appli
ation of the same te
hniques.Theorem 3.9 (Test Set Lower Bound) For all 
lassi�ers, c, for all δ ∈ (0, 1]

Pr
S∼Dm

(

cD ≥ min
p

{p : 1 − Bin (m, ĉS , p) ≥ δ}

)

≥ 1 − δ.The proof is 
ompletely symmetri
. Note that both bounds hold with probability 1 − 2δsin
e Pr(A or B) ≤ Pr(A) + Pr(B). This is parti
ularly 
onvenient when the square-rootversion of the Cherno� approximation is used in both dire
tions to get:
∀c Pr

S∼Dm





∣

∣

∣

∣

cD −
ĉS

m

∣

∣

∣

∣

≤

√

ln 2
δ

2m



 ≥ 1 − δ.Example 3 (
ontinued) let δ = 0.1. Using the square root Cherno� bound with ĉS =
38 out of 100 examples, we get the 
on�den
e interval cD ∈ [0.26, 0.50]. Using an exa
t
al
ulation for the Binomial tail, we get: cD ∈ [0.30, 0.47]. In general, as the observed errormoves toward 0, the exa
t 
al
ulation provides a tighter 
on�den
e interval than the agnosti
approximation. 220



Pra
ti
al Predi
tion Theory for Classifi
ation3.1.3 The state of the artAlthough the test set bound is very well understood, the same 
annot be said of othertesting methods. Only weak general results in this model are known for some variants of
ross validation (Blum et al., 1999, see). For spe
i�
 learning algorithms (su
h as nearestneighbor), stronger results are known (Devroye et al., 1996, see). There are a wide range ofessentially unanalyzed methods and a su

essful analysis seems parti
ularly tri
ky althoughvery worthwhile if 
ompleted.3.2 Test Set Bound Impli
ationsThere are some 
ommon pra
ti
es in ma
hine learning whi
h 
an be improved by appli
ationof the test set bound. When attempting to 
al
ulate a 
on�den
e interval on the true errorrate given the test set, many people follow a standard statisti
al pres
ription:1. Cal
ulate the empiri
al mean µ̂ =
ĉStest

m = 1
m

∑m
i=1 I(h(xi) 6= yi).2. Cal
ulate the empiri
al varian
e σ̂2 = 1

m−1

∑m
i=1(I(c(xi) = yi) − µ̂)2.3. Pretend that the distribution is Gaussian with the above varian
e and 
onstru
t a
on�den
e interval by 
utting the tails of the Gaussian 
umulative distribution at the

2σ̂ (or some other) point.This approa
h is motivated by the fa
t that for any �xed true error rate, the distribution ofthe observed a

ura
y behaves like a Gaussian asymptoti
ally. Here, asymptoti
ally means�in the limit as the number of test examples goes to in�nity�.The problem with this approa
h is that it leads to fundamentally misleading results asshown in Figure 4. To 
onstru
t this �gure, a 
olle
tion of dis
rete (aka �nominal�) featuredatasets from the UCI ma
hine learning database were split into training and test sets. Ade
ision tree 
lassi�er was learned on ea
h training set and then evaluated on the held-outtest set.This �misleading� is both pessimisti
 and (mu
h worse) optimisti
. The pessimism 
anbe seen by intervals with boundaries less than 0 or greater than 1 and the optimism byobserving what happens when the test error is 0. When we observe perfe
t 
lassi�
ation,our 
on�den
e interval should not have size 0 for any �nite m.The basi
 problem with this approa
h is that the Binomial distribution is not similar toa Gaussian when the error rate is near 0. Sin
e our goal is �nding a 
lassi�er with a smalltrue error, it is essential that the means we use to evaluate 
lassi�ers work in this regime.The test set bound 
an satisfy this requirement (and, in fa
t, operates well for all true errorregimes).1. The test set bound approa
h is never optimisti
.2. The test set bound based 
on�den
e interval always returns an upper and lower boundin [0, 1].The 2σ̂ method is a reli
 of times when 
omputational e�ort was expensive. It is now simpleand easy to 
al
ulate a bound based upon the 
umulative distribution of the Binomial(Langford, see). 221
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Figure 5: For this diagram �in
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lassi�er withoutknowledge of the test examples. A similar diagram for train set bounds is pre-sented later (and is somewhat more 
ompli
ated). We 
an think of the bound asa te
hnique by whi
h the �Learner� 
an 
onvin
e the �Veri�er� that learning haso

urred (and the degree to whi
h it has o

urred). Ea
h of the proofs 
an bethought of as a 
ommuni
ation proto
ol for an intera
tive proof of learning by theLearner.The test set bound 
an be thought of as a game where a �Learner� attempts to 
onvin
ea reasonable �Veri�er� of the amount of learning whi
h has o

urred. Pi
torially we 
anrepresent this as in Figure 5.4. The O

am's Razor BoundGiven that the simple test set bound works well, why do we need to engage in furtherwork? There is one serious drawba
k to the test set te
hnique�it requires mtest otherwiseunused examples. An extra mtest examples for the training set de
reases the true error ofthe learned hypothesis to 0 from 0.5 for some natural learning algorithm/learning problempairs. This loss of performan
e due to holding out examples is very severe.There is another reason why training set based bounds are important. Many learningalgorithms impli
itly assume that the train set a

ura
y �behaves like� the true error in
hoosing the hypothesis. With an inadequate number of training examples, there may bevery little relationship between the behavior of the train set a

ura
y and the true error.223



LangfordTraining set based bounds 
an be used in the training algorithm and 
an provide insightinto the learning problem itself.This se
tion is organized into three subse
tions.1. Subse
tion 4.1 states and proves the O

am's Razor bound.2. Subse
tion 4.2 proves that the O

am's Razor bound 
annot be improved in general.3. Subse
tion 4.3 dis
usses impli
ations of the O

am's Razor bound and shows resultsfor its appli
ation.4.1 The O

am's Razor boundThis O

am's Razor bound (Blumer et al., 1987)(M
Allester, 1999) in more approximateforms has appeared elsewhere. We use �prior� (with quotes) here be
ause it is an arbitraryprobability distribution over 
lassi�ers and not ne
essarily a Bayesian prior. The distin
tionis important, be
ause the theory holds regardless of whether or not a Bayesian prior is used.Theorem 4.1 (O

am's Razor Bound) For all D, for all �priors� P (c) over the 
lassi�ers
c, for all δ ∈ (0, 1]:

Pr
S∼Dm

(

∀c : cD ≤ Bin (m, ĉS , δP (c))
)

≥ 1 − δThe appli
ation of the O

am's Razor bound is somewhat more 
ompli
ated than the ap-pli
ation of the test set bound. Pi
torially, the proto
ol for bound appli
ation is given inFigure 6. It is very important to noti
e that the �prior� P (c) must be sele
ted before seeingthe training examples.Proof (pi
torially in Figure 7) First, note that if P (c) = 0, then Bin (m, ĉS , 0) = 1 andthe bound is always valid. The remainder of this proof applies to the 
ountable set of csatisfying P (c) > 0.The proof starts with the test set bound:
∀c Pr

S∼Dm

(

cD ≤ Bin (m, ĉS , δP (c))
)

≥ 1 − δP (c)Negating this statement, we get:
∀c Pr

S∼Dm

(

cD > Bin (m, ĉS , δP (c))
)

< δP (c)then, we apply the union bound in a nonuniform manner. The union bound says that
Pr(A or B) ≤ Pr(A) + Pr(B). Applying the union bound to every 
lassi�er with a positivemeasure gives a total probability of failure of

∑

c:P (c)>0

δP (c) = δ
∑

c:P (c)>0

P (c) = δwhi
h implies
Pr

S∼Dm

(

∃c : cD > Bin (m, ĉS , δP (c))
)

< δ.Negating this again 
ompletes the proof. 224
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Verifier Learner

m examples

Draw Training 
Examples

Evaluate Bound

Classifier, c Choose c

"Prior", P(c)

δ
Occam’s Razor Bound

Figure 6: In order to apply the O

am's Razor bound it is ne
essary that the 
hoi
e of �prior�be made before seeing any training examples. Then, the bound is 
al
ulated basedupon the 
hosen 
lassi�er. Note that it is �legal� to 
hose the 
lassi�er based uponthe prior P (c) as well as the empiri
al error ĉS .

225



Langford

 0

 0.1

 0  0.2  0.4  0.6  0.8  1

P
ro

ba
bi

lit
y

Empirical Error Rate

Occam’s Razor Tail Cuts

cut

 0

 0.1

 0.2

 0  0.2  0.4  0.6  0.8  1
P

ro
ba

bi
lit

y
Empirical Error Rate

Occam Bound Calculation

empirical error

 0

 0.1

 0.2

 0  0.2  0.4  0.6  0.8  1

P
ro

ba
bi

lit
y

Empirical Error Rate

Consistent Error Rates

empirical error

 0

 0.1

 0.2

 0  0.2  0.4  0.6  0.8  1

P
ro

ba
bi

lit
y

Empirical Error Rate

True Error Rate Bound

empirical error
true error bound

Figure 7: The sequen
e of pi
tures is the pi
torial representation of the proof of the O

am'sRazor Bound. The �rst �gure shows a set of 
lassi�ers, ea
h with a tail 
ut ofsome varying depth. The se
ond pi
ture shows an observed training error and thepossible Binomial distributions for a 
hosen 
lassi�er. The third pi
ture showsthe true errors whi
h are 
onsistent with the observation and the tail 
uts. Thefourth pi
ture shows the true error bound.
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ti
al Predi
tion Theory for Classifi
ation4.1.1 O

am's Razor CorollariesJust as with the test set bound, we 
an relax the O

am's Razor bound (Theorem 4.1) withthe Cherno� approximations to get a somewhat more tra
table expression.Corollary 4.2 (Cherno� O

am's Razor Bound) For all D, for all �priors� P (c) over 
las-si�ers, for all δ ∈ (0, 1]:
Pr

S∼Dm



∀c : cD ≤
ĉS

m
+

√

ln 1
P (c) + ln 1

δ

2m



 ≥ 1 − δProof Approximate the Binomial tail with the Cherno� Bound (lemma 3.6).Many people are more familiar with a degenerate form of this bound where P (c) = 1
|H|and H is some set of 
lassi�ers. In that 
ase, simply repla
e ln 1

P (c) with ln |H|. The formpresented here is both more general and ne
essary if the bound is to be used in pra
ti
e.Other 
orollaries as in Se
tion 3.1.1 exist for the O

am's Razor bound. In general, justsubstitute δ → δP (c).4.1.2 O

am's Razor Lower boundJust as for the test set bound, a lower bound of the same form applies.Theorem 4.3 (O

am's Razor Lower Bound) For all D, for all �priors� P (c) over the
lassi�ers, c, for all δ ∈ (0, 1]:
Pr

S∼Dm

(

∀c : cD ≥ min
p

{p : 1 − Bin (m, ĉS , p) ≥ δP (c)}

)

≥ 1 − δ.Example 4 (
ontinued) Suppose that instead of having 100 test examples, we had 100 trainexamples. Also suppose that before seeing the train examples, we 
ommitted to P (c) = 0.1for c the 
onstant 
lassi�er whi
h predi
ts �no rain�. Then, the Cherno� approximations ofthe upper and lower bound give the interval, cD ∈ [0.22, 0.54]. With an exa
t 
al
ulation, weget cD ∈ [0.26, 0.51].4.1.3 The state of the artA very large amount of work has been done on train set bounds. In addition to thosein
luded here, there are:1. Reinterpretations of uniform 
onvergen
e (Vapnik and Chervonenkis, 1971) results for
ontinuously parameterized 
lassi�ers.2. Reinterpretations of PAC 
onvergen
e (Valiant, 1984) results.3. Shell bounds (Langford and M
Allester, 2000) whi
h take advantage of the distributionof true error rates on 
lassi�ers.4. Train and Test bounds (Langford, 2002) whi
h 
ombine train set and test set bounds.227



Langford5. (Lo
al) Radema
her 
omplexity (Bartlett et al., 2004) results whi
h take advantage ofthe error geometry of nearby 
lassi�ers.... and many other results.Of this large amount of work only a small fra
tion has been shown to be useful on real-world learning algorithm/learning problem pairs. The looseness of train set based boundsoften pre
ludes analyti
al use.4.2 The O

am's Razor Bound is Sometimes TightThe question of tightness for train set bounds is important to address, as many of themhave been extremely loose. The simplest method to address this tightness is 
onstru
tive:exhibit a learning problem/algorithm pair for whi
h the bound is almost a
hieved. For thetest set bound, this is trivial as any 
lassi�er with a large enough true error will a
hieve thebound. For the train set bound, this is not so trivial.How tight is the O

am's Razor bound (4.1)? The answer is sometimes tight. In par-ti
ular, we 
an exhibit a set of learning problems where the O

am's Razor bound 
an notbe made signi�
antly tighter as a fun
tion of the observables, m, δ, P (c), and ĉS . After�xing the value of these quantities we 
onstru
t a learning problem exhibiting this nearequivalen
e to the O

am's Razor bound.Theorem 4.4 (O

am's Razor tightness) For all P (c), m, k, δ there exists a learning prob-lem D and algorithm su
h that:
Pr

S∼Dm

(

∃c : ĉS ≤ k and cD ≥ Bin (m, ĉS , δP (c))
)

≥ δ − δ2.Furthermore, if c∗ is the 
lassi�er with minimal training error, then:
Pr

S∼Dm

(

c∗D ≥ Bin (m, ĉ∗S , δP (c))
)

≥ δ − δ2.Intuitively, this theorem implies that we 
an not improve signi�
antly on the O

am's Razorbound (Theorem 4.1) without using extra information about our learning problem.Proof The proof is 
onstru
tive: we 
reate a learning problem on whi
h large deviationsare likely. We start with a prior P (c), probability of error δ, m, and a targeted empiri
alerror number, k. For su

in
tness we assume that P (c) has support on a �nite set of size n.To de�ne the learning problem, let: X = {0, 1}n and Y = {0, 1}.The distribution D 
an be drawn by �rst sele
ting Y with a single unbiased 
oin �ip,and then 
hoosing the ith 
omponent of the ve
tor X independently, Pr((X1, ...,Xn)|Y ) =
Πn

i=1 Pr(Xi|Y ) . The individual 
omponents are 
hosen so Pr(Xi = Y |Y ) = Bin (m,k, δP (c)).The 
lassi�ers we 
onsider just use one feature to make their 
lassi�
ation: ci(x) = xi.The true error of these 
lassi�ers is given by: cD = Bin (m,k, δP (c)).This parti
ular 
hoi
e of true errors implies that if any 
lassi�er has a too-small trainerror, then the 
lassi�er with minimal train error must have a too-small train error.Using this learning problem, we know that:
∀c,∀δ ∈ (0, 1] : Pr

S∼Dm

(

cD ≥ Bin (m, ĉS , δP (c))
)

= δP (c)228
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ti
al Predi
tion Theory for Classifi
ation(negation)
⇒ ∀c,∀δ ∈ (0, 1] : Pr

S∼Dm

(

cD < Bin (m, ĉS , δP (c))
)

= 1 − δP (c)(independen
e)
⇒ ∀δ ∈ (0, 1] : Pr

S∼Dm

(

∀c cD < Bin (m, ĉS , δP (c))
)

<
∏

c

(1 − δP (c))(negation)
⇒ ∀δ ∈ (0, 1] : Pr

S∼Dm

(

∃c cD ≥ Bin (m, ĉS , δP (c))
)

≥ 1 −
∏

c

(1 − δP (c))

=

n
∑

i=1

δP (ci)
∏

j<i

(1 − δP (cj)) ≥

n
∑

i=1

δP (ci)(1 − δ) = δ − δ2where the last inequality follows from (1 − a)(1 − b) ≥ 1 − a − b for a, b ∈ [0, 1].The lower bound theorem implies that we 
an not improve an O

am's Razor like statement.However, it is important to note that large improvements are possible if we use other sour
esof information. To see this, just note the 
ase where every single 
lassi�er happens to bethe same. In this 
ase the �right� bound would the be the test set bound, rather thanthe O

am's Razor bound. The PAC-Bayes bound and the Sample Compression boundpresented in the next se
tions use other sour
es of information. Another 
ommon sour
e ofinformation is spe
ialization to 
lassi�ers of some spe
i�
 sort.4.3 O

am's Razor Bound Impli
ationsThe O

am's Razor bound is strongly related to 
ompression. In parti
ular, for any self-terminating des
ription language, d(c), we 
an asso
iate a �prior� P (c) = 2−|d(c)| with theproperty that∑c P (c) ≤ 1. Consequently, short des
ription length 
lassi�ers tend to have atighter 
onvergen
e and the penalty term, ln 1
P (c) is the number of �nats� (bits base e). Forany language �xed before seeing the training sequen
e, 
lassi�ers with shorter des
riptionlengths have tighter bounds on the true error rate.One parti
ularly useful des
ription language to 
onsider is the exe
ution tra
e of a learn-ing algorithm. If we 
arefully note the sequen
e of data-dependent 
hoi
es whi
h a learningalgorithm makes, then the output 
lassi�er 
an be spe
i�ed by a sequen
e su
h as �2nd
hoi
e, third 
hoi
e, �rst 
hoi
e, et
...� This is the idea behind mi
ro
hoi
e bounds (Lang-ford and Blum, 1999). Results for this approa
h are reported in Figure 8 and are strongenough to a
t as an empiri
al existen
e proof that O

am's Razor bounds 
an be made tightenough for useful appli
ation.5. PAC-Bayes BoundThe PAC-Bayes bound (M
Allester, 1999) is parti
ularly ex
iting be
ause it 
an providequantitatively useful results for 
lassi�ers with real valued parameters. This in
ludes su
h229
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Figure 8: This is a plot 
omparing 
on�den
e intervals built based upon the test set bound(Theorem 3.3) with an 80%/20% train/test split on the left and the O

am'sRazor bound (Theorem 4.1) with all data in the training set on the right. TheO

am's razor bound is sometimes superior on the smaller data sets and alwaysnonva
uous (in 
ontrast to many other train set bounds).
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Draw Training 
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Evaluate Bound

PAC−Bayes Bound

"Prior", P(c)

"Posterior", Q(c) Choose Q(c)

δ

Figure 9: The �intera
tive proof of learning� asso
iated with the PAC-Bayes bound. The�gure is the same as for the O

am's razor bound, ex
ept that instead of 
ommit-ting to a single 
lassi�er, the PAC-Bayes bound applies to any distribution over
lassi�ers.
ommonly used 
lassi�ers as Support Ve
tor Ma
hines and Neural Networks.3 This se
tionis divided into three parts:1. Subse
tion 5.1 states and proves the PAC-Bayes Bound.2. Subse
tion 5.2 shows that the PAC-Bayes Bound is nearly as tight as possible giventhe observations.3. Subse
tion 5.3 dis
usses results from the appli
ation of the PAC-Bayes bound to sup-port ve
tor ma
hines.5.1 The PAC-Bayes BoundThe PAC-Bayes bound has been improved by tightening (Langford and Seeger, 2001) andthen with a mu
h simpler proof (Seeger, 2002) sin
e it was originally stated. The statementand proof presented here in
orporate these improvements and improve on them slightly.The PAC-Bayes bound is dependent upon two derived quantities, an average true error:
QD ≡ Ec∼QcDand an average train error rate:
Q̂S ≡ Ec∼Q

ĉS

m
.3. There is a 
aveat here�the bound only applies to sto
hasti
 versions of the 
lassi�ers. However, theprobability that the sto
hasti
 
lassi�er di�ers from the 
lassi�er 
an be made very small.231



LangfordThese quantities 
an be interpreted as the train error rate and true error of the meta-
lassi�erwhi
h 
hooses a 
lassi�er a

ording to Q every time a 
lassi�
ation is made. If we refer tothis meta-
lassi�er as Q, the notation for error rates is 
onsistent with our earlier notation.The �intera
tive proof of learning� viewpoint of the PAC-Bayes bound is shown in Figure9. It is essentially the same as for the O

am's Razor bound ex
ept for the 
ommitment tothe meta
lassi�er Q rather than the 
lassi�er c.Theorem 5.1 (PAC-Bayes Bound) For all D, for all �priors� P (c) over the 
lassi�ers c,for all δ ∈ (0, 1]:
Pr

S∼Dm

(

∀Q(c) : KL+

(

Q̂S||QD

)

≤
KL(Q||P ) + ln m+1

δ

m

)

≥ 1 − δwhere KL(Q||P ) = Ec∼Q ln Q(c)
P (c) is the KL-divergen
e between Q and P .Note that the PAC-Bayes bound applies to any distribution over 
lassi�ers. When Q is
on
entrated on one 
lassi�er, we have KL(Q||P ) = ln 1

P (c) , just as in the O

am's razorbound,4 with the only distin
tion being the additive ln(m+1)
m term. It is somewhat surprisingthat the bound holds for every distribution Q with only the slight worsening by ln(m+1)

m .Sin
e the KL-divergen
e applies to distributions over 
ontinuous valued parameters, thePAC-Bayes bound 
an be nontrivially tight in this setting as well. This fa
t is used in theappli
ation se
tion.We �rst state a 
ouple simple lemmas that are handy in the proof. The intuition behindthis lemma is that the expe
ted probability of an event is not too small.Lemma 5.2 For all D, for all P (c), for all δ ∈ (0, 1]:
Pr

S∼Dm

(

Ec∼P
1

PrS′∼Dm (ĉS = ĉS′)
≤

m + 1

δ

)

≥ 1 − δ.Proof Note that:
∀c ES∼Dm

1

PrS′∼Dm (ĉS = ĉS′)
=
∑

k
m

Pr
S∼Dm

(ĉS = k)
1

PrS′∼Dm (ĉS′ = k)
= m + 1.Taking the expe
tation over 
lassi�ers a

ording to P and swit
hing the order of expe
tation,we get:

ES∼DmEc∼P
1

PrS′∼Dm (ĉS = ĉS′)
= m + 1and using the Markov inequality (X ≥ 0, EX = µ, ⇒ Pr(X > µ

δ ) < δ), we get:
∀P Pr

S∼Dm

(

Ec∼P
1

PrS′∼Dm (ĉS = ĉS′)
>

m + 1

δ

)

< δ.The next lemma shows that a 
ertain expe
tation is bounded by the Kullba
k-Leibler dis-tan
e between two 
oin �ips, just as for the relative entropy Cherno� bound (Lemma 3.6).4. As weakened with the relative entropy Cherno� bound (Lemma 3.6) on the Binomial.232



Pra
ti
al Predi
tion Theory for Classifi
ationLemma 5.3 Fix all example sequen
es S. For all Q(c):
Ec∼Q ln 1

PrS′∼Dm(ĉS=ĉs′)

m
≥ KL(Q̂S ||QD).Proof

Ec∼Q ln 1
PrS′∼Dm(ĉS=ĉs′)

m
=

1

m
Ec∼Q ln

1
(

m

ĉS

)

c
ĉS

D (1 − cD)m−ĉS

≥
1

m
Ec∼Q ln

1

∑ĉS

k=0

(

m

k

)

ck
D(1 − cD)m−k

≥ Ec∼QKL( ĉS

m
||cD

)where the last inequality follows from the relative entropy Cherno� bound. Sin
e ∂2

∂p∂qKL(q||p) =

−1
p−

1
1−p < 0 the fun
tion is 
on
ave in both arguments. Jensen's inequality (f(x, y) 
on
ave

⇒ Ef(x, y) ≥ f(Ex,Ey)) gives us:
≥ KL(Ec∼QĉS ||Ec∼QcD)whi
h 
ompletes the proof.With these two lemmas, the PAC-Bayes theorem is easy to prove.Proof (Of the PAC-Bayes theorem) Fix a training set S. Let

PG(c) =
1

PrS′∼Dm (ĉS′ = ĉS)Ed∼P
1

PrS′∼Dm(d̂S=d̂S′)

P (c).

PG(c) is a normalized distribution be
ause it has the form ac

Eac
P (c) where P (c) is a distri-bution.

⇒ 0 ≤ KL(Q||PG) = Ec∼Q ln





Q(c)

P (c)
Pr

S′∼Dm
(ĉS′ = ĉS) Ed∼P

1

PrS′∼Dm

(

d̂S = d̂S′

)





= KL(Q||P ) − Ec∼Q ln
1

PrS′∼Dm (ĉS′ = ĉS)
+ ln Ed∼P

1

PrS′∼Dm

(

d̂S = d̂S′

)

⇒ Ec∼Q ln
1

PrS′∼Dm (ĉS′ = ĉS)
≤ KL(Q||P ) + ln Ed∼P

1

PrS′∼Dm

(

d̂S = d̂S′

) .Applying lemma 5.3 on the left hand term we get:
mKL(Q̂S ||QD) ≤ KL(Q||P ) + ln Ed∼P

1

PrS′∼Dm

(

d̂S = d̂S′

) .This holds for all S. Applying Lemma 5.2 whi
h randomizes over S, we get the theorem.233



Langford5.2 The PAC-Bayes Bound is sometimes TightSin
e the PAC-Bayes bound is (almost) a generalization of the O

am's Razor bound, thetightness result for O

am's Razor also applies to PAC-Bayes bounds.5.3 Appli
ation of the PAC-Bayes BoundApplying the PAC-Bayes bound requires spe
ialization (Langford and Shawe-Taylor, 2002).Here, we spe
ialize to 
lassi�ers of the form:
c(x) = sign (~w · ~x) .Note that via the kernel tri
k, Support Ve
tor Ma
hines also have this form.The spe
ialization is naturally expressed in terms of a few derived quantities:1. The 
umulative distribution of a Gaussian. Let F̄ (x) =

∫∞
x

1√
2π

e−x2/2. Here we use
F̄ rather than F to denote the fa
t that we integrate from x to ∞ rather than −∞ to
x.2. A �posterior� distribution Q(~w, µ) whi
h is N(µ, 1) for some µ > 0 in the dire
tion of
~w and N(0, 1) in all perpendi
ular dire
tions.3. The normalized margin of the examples

γ(~x, y) =
y ~w · ~x

||~w||||~x||
.4. A sto
hasti
 error rate, Q̂(~w, µ)S = E~x,y∼SF̄ (µγ(~x, y)) .This last quantity in parti
ular is very important to understand. Consider the 
ase as

µ approa
hes ∞. When the margin is negative (indi
ating an in
orre
t 
lassi�
ation),
F̄ (µγ(~x, y)) approa
hes 1. When the margin is positive F̄ (µγ(~x, y)) approa
hes 0. Thus,
Q̂(~w, µ)S is a softened form of the empiri
al error ĉS whi
h takes into a

ount the margin.Corollary 5.4 (PAC-Bayes Margin Bound) For all distributions D, for all δ ∈ (0, 1], wehave:

Pr
S∼Dm

(

∀~w, µ : KL(Q̂(~w, µ)S ||Q(~w, µ)D

)

≤
µ2

2 + ln m+1
δ

m

)

≥ 1 − δ.Proof The proof is very simple. We just 
hose the prior P = N(0, 1)n and work out theimpli
ations.Sin
e the Gaussian distribution is the same in every dire
tion, we 
an reorient the 
o-ordinate system of the prior to have one dimension parallel to w. Sin
e the draws in theparallel and perpendi
ular dire
tions are independent, we have:KL(Q||P ) = KL(Q⊥||P⊥) +KL(N(µ, 1)||N(0, 1))

=
µ2

2234
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ti
al Predi
tion Theory for Classifi
ationas required.All that remains is 
al
ulating the sto
hasti
 error rate Q̂(~w, µ)S . Fix a parti
ularexample (~x, y). This example has a natural de
omposition ~x = ~x|| + ~x⊥ into a 
omponent
~x|| parallel to the weight ve
tor ~w and a 
omponent ~x⊥ perpendi
ular to the weight ve
tor.To 
lassify, we draw weight ve
tor ~w

′ from Q̂(~w, µ). This ~w
′ 
onsists of three 
omponents,

~w
′
= ~w

′

|| + ~w
′

⊥ + ~w
′

⊥⊥. Here ~w
′

|| ∼ N(µ, 1) is parallel to the original weight ve
tor, ~w
′

⊥ ∼

N(0, 1) whi
h is parallel to ~x⊥ and ~w
′

⊥⊥ is perpendi
ular to both ~w and ~x. We have:
Q̂(~w, µ)S = E~x,y∼S,~w′∼Q(~w,µ)I

(

y 6= sign(~w
′
· ~x
))

= E~x,y∼S,~w′∼Q(~w,µ)I (y ~w · ~x ≤ 0) .If we let w
′

|| = ||~w
′

||||, w
′

⊥ = ||~w
′

⊥||, x|| = ||~x||||, and x⊥ = ||~x⊥||, and assume (without loss ofgenerality) that y = 1 we get:
= E~x,y∼S,w

′

||
∼N(µ,1),w

′
⊥∼N(0,1)I

(

y(w
′

||x|| + w
′

⊥x⊥) ≤ 0
)

= E~x,y∼SE
w

′

||
∼N(µ,1)

E
w

′
⊥∼N(0,1)

I
(

y(w
′

||x|| + w
′

⊥x⊥) ≤ 0
)

= E~x,y∼SEz′∼N(0,1)Ew
′
⊥∼N(0,1)

I

(

yµ ≤ −yz
′
− yw

′

⊥
x⊥
x||

)

.Using the symmetry of the Gaussian, this is:
= E~x,y∼SEz′∼N(0,1)Ew

′
⊥∼N(0,1)I

(

yµ ≤ yz
′
+ yw

′

⊥
x⊥
x||

)Using the fa
t that the sum of two Gaussians is a Gaussian:
= E~x,y∼SE

v∼N

 

0,1+
x2
⊥

x2
||

!I (yµ ≤ yv)

= E~x,y∼SE
v∼N

“

0, 1
γ(~x,y)2

”I (yµ ≤ yv)

= E~x,y∼SF̄ (µγ(~x, y))�nishing the proof.Using the 
orollary, the true error bound Q̄(~w, µ)D satis�es the equation:KL(Q̂(~w, µ)S ||Q̄(~w, µ)D

)

=
µ2

2 + ln m+1
δ

m
.This is an impli
it equation for Q̄ whi
h 
an be easily solved numeri
ally.The bound is stated in terms of dot produ
ts here, so naturally it is possible to kernelizethe result using methods from (Herbri
h and Graepel, 2001). In kernelized form, the boundapplies to 
lassi�ers (as output by SVM learning algorithms) of the form:

c(x) = sign( m
∑

i=1

αik(xi, x)

)

. (1)235



LangfordSin
e, by assumption, k is a kernel, we know that k(xi, x) = ~Φ(xi) · ~Φ(x) where ~Φ(x)is some proje
tion into another spa
e. In kernelized form, we get ~w · ~x =
∑m

i=1 αik(xi, x),
~x ·~x = k(x, x), ~w · ~w =

∑

i,j αiαjk(xi, xj), de�ning all of the ne
essary quantities to 
al
ulatethe normalized margin,
γ(x, y) =

∑m
i=1 αik(xi, x)

√

k(x, x)
∑m,m

i,j=1,1 αiαjk(xi, xj)
.One element remains, whi
h is the value of µ. Unfortunately the bound 
an be non-monotoni
 in the value of µ, but it turns out that for 
lassi�ers learned by support ve
torma
hines on reasonable datasets, there is only one value of µ whi
h is (lo
ally, and thusglobally) minimal. A binary sear
h over some reasonable range of µ (say from 1 to 100) 
an�nd the minima qui
kly, given the pre
omputation of the margins. It is worth noting againhere that we are not �
heating��the bound holds for all values of µ simultaneously.The 
omputational time of the bound 
al
ulation is dominated by the 
al
ulation ofthe margins whi
h is O

(

m2
) where m is the number of support ve
tors with a nonzeroasso
iated α. This 
omputational time is typi
ally dominated by the time of the SVMlearning algorithm.5.3.1 ResultsAppli
ation of this bound to support ve
tor ma
hines is of signi�
ant importan
e be
auseSVMs are reasonably e�e
tive and adaptable 
lassi�ers in 
ommon and widespread use. AnSVM learns a kernelized 
lassi�er as per equation (1)5.We apply the support ve
tor ma
hine to 8 UCI database problems 
hosen to �t the
riteria �two 
lasses� and �real valued input features�. The problems vary in size over anorder of magnitude from 145 to 1428 examples. In Figure 10 we use a 70/30 train/test splitof the data.In all experiments, we use SVMlight (Joa
hims) with a Gaussian kernel and the defaultbandwidth. Results for other reasonable 
hoi
es of the �C�, bandwidth6, and kernel appearto be qualitatively similar (although of 
ourse they di�er quantitatively).It is important to note that the PAC-Bayes margin bound is not pre
isely a bound (or
on�den
e interval) on the true error rate of the learned 
lassi�er. Instead, it is a trueerror rate bound on an asso
iated sto
hasti
 
lassi�er 
hosen so as to have a similar testerror rate. These bounds 
an be regarded as bounds for the original 
lassi�er only underan additional assumption: that pi
king a 
lassi�er a

ording to the majority vote of thissto
hasti
 distribution does not worsen the true error rate. This is not true in general, butmay be true in pra
ti
e.It is of 
ourse unfair to 
ompare the train set bound with the test set bound on a 70/30train/test split be
ause a very tight train set bound would imply that it is unne
essary toeven have a test set. In Figure 11 we 
ompare the true error bounds on all of the data tothe true error bounds generated from the 70/30 train/test split.5. Some SVM learning algorithms a
tually learn a 
lassi�er of the form: c(x) = sign `

b +
Pm

i=1 αik(xi, x)
´.We don't handle this form here.6. Note that the bandwidth of a Gaussian kernel used by an SVM is not dire
tly related to the optimizedvalue of µ we �nd. 236
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Figure 10: This �gure shows the results of applying SVMlight to 8 datasets with a Gaussiankernel and a 70/30 train/test split. The observed test error rate is graphed asan X. On the test set, we 
al
ulate a Binomial 
on�den
e interval (probability ofbound failure = 0.01) whi
h upper bounds the true error rate. On the trainingset we 
al
ulate the PAC-Bayes margin bound for an optimized 
hoi
e of µ.
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Figure 11: In addition to 
omparing with everything in Figure 10, we graph the marginbound when all of the data is used for the train set. Note that it improvessomewhat on the margin bound 
al
ulated using the 70% train set (7/10 marginbound), but not enough to 
ompete with the test set bound.
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ti
al Predi
tion Theory for Classifi
ationThe results show that the PAC-Bayes margin bound is tight enough to give useful infor-mation, but still not 
ompetitive with the test set bounds. This is in strong 
ontrast with atradition of quantitatively impra
ti
al margin bounds. There are several uses available forbounds whi
h provide some information but whi
h are not fully tight.1. They might be 
ombined with a train/test bound (Langford, 2002).2. The train set bound might easily be
ome tighter for smaller sample sizes. This wasobserved in (Langford, 2002).3. The train set bound might still have the right �shape� for 
hoosing an optimal param-eter setting, su
h as �C� in a Support Ve
tor Ma
hine.6. Sample Compression BoundThe sample 
ompression bound (Littlestone and Warmuth), (Floyd and Warmuth, 1995)is like the PAC-Bayes bound in that it applies to arbitrary pre
ision 
ontinuous valued
lassi�ers. Unlike the PAC-Bayes bound, it applies meaningfully to nonsto
hasti
 
lassi-�ers. Mainstream learning algorithms do not optimize the sample 
ompression metri
, sothe bound appli
ation is somewhat rarer. Nonetheless, there do exist some reasonably 
om-petitive learning algorithms for whi
h the sample 
ompression bound produ
es signi�
antresults.The se
tion is organized as follows:1. Subse
tion 6.1 states and proves the sample 
ompression bound.2. Subse
tion 6.2 shows that the sample 
ompression bound is nearly as tight as possiblegiven the observations.3. Subse
tion 6.3 dis
usses results from the appli
ation of the sample 
ompression boundto support ve
tor ma
hines.6.1 The Sample Compression BoundThe Sample Compression bound (Littlestone and Warmuth) (Floyd and Warmuth, 1995)stated here di�ers from older results by generalization and simpli�
ation but the boundbehavior is qualitatively identi
al.Suppose we have a learning algorithm A(S) whose training is �sparse�7 in the sense thatthe output 
lassi�er is dependent upon only a subset of the data, A(S) = A(S′) for S′ ⊆ S.The sample 
ompression bound is dependent on the errors, ĉS−S′ on the subset S −S′. Themotivation here is that the examples whi
h the learning algorithm does not depend uponare �almost� independent and so we 
an �almost� get a test set bound. In general, the boundbe
omes tighter as the dependent subset S′ be
omes smaller and as the error number on thenondependent subset S − S′ be
omes smaller.7. This is satis�ed, for example, by the Support Ve
tor Ma
hine algorithm whi
h only depends upon theset of support ve
tors. 239
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Figure 12: The intera
tive proof of learning for the sample 
ompression bound. Note thatthe learning algorithm is arbitrary here, similar to the test set bound.Viewed as an intera
tive proof of learning (in Figure 12), the sample 
ompression boundis unique amongst training set bounds be
ause it does not require any initial 
ommitmentto a measure over the 
lassi�ers8.Theorem 6.1 (Sample Compression Bound) For all δ ∈ (0, 1], D, A:
Pr

S∼Dm

(

∀S′ ⊆ S with c = A(S′) : cD ≤ Bin(|S − S′|, ĉS−S′ ,
δ

m
( m
|S−S′|

)

))

≥ 1 − δ.Proof Suppose we knew in advan
e that the learning algorithm will not depend upon somesubset of the examples. Then, the �undependent� subset a
ts like a test set and gives us atest set bound:
∀S′ ⊆ S, c = A(S′) : Pr

S∼Dm

(

cD ≤ Bin(|S − S′|, ĉS−S′ ,
δ

m
( m
|S−S′|

)

))

≥ 1 −
δ

m
( m
|S−S′|

) .(Note that, te
hni
ally, it is possible to refer to S′ unambiguously before randomizing over
S by spe
ifying the indexes of S 
ontained in S′.) Negating this, we get:

∀S′ ⊆ S, c = A(S′) : Pr
S∼Dm

(

cD > Bin(|S − S′|, ĉS−S′ ,
δ

m
( m
|S−S′|

)

))

<
δ

m
( m
|S−S′|

)8. However, we 
an regard the 
ommitment to a learning algorithm as an impli
it 
ommitment to a measureover 
lassi�ers whi
h is dependent on the learning algorithm and the distribution generating the data.Viewed from this perspe
tive, the sample 
ompression bound is the O

am's Razor bound, ex
ept forthe minor detail that the set of evaluating examples varies.240



Pra
ti
al Predi
tion Theory for Classifi
ationand using the union bound (Pr(A or B) ≤ Pr(A)+ Pr(B)) over ea
h possible subset, S′, weget:
Pr

S∼Dm

(

∃S′ ⊆ S with c = A(S′) : cD > Bin(|S − S′|, ĉS−S′ ,
δ

m
(

m
|S−S′|

)

))

< δ.Negating this again gives us the proof.6.2 The Sample Compression Bound is Sometimes TightWe 
an 
onstru
t a learning algorithm/learning problem pair su
h that the Sample 
om-pression bound is provably near optimal, as a fun
tion of its observables.Theorem 6.2 (Sample Compression Tightness) For all δ ∈ (0, 1], m, k, there exists adistribution D and learning algorithm A s.t.
Pr

S∼Dm

(

∃S′ ⊆ S with c = A(S′) : cD > Bin(|S − S′|, ĉS−S′ ,
δ

m
( m
|S−S′|

)

))

> δ − δ2.furthermore, if S∗ minimizes Bin(|S − S′|, ĉS−S′ , δ
m( m

|S−S′|)

), then
Pr

S∼Dm

(

c∗ = A(S∗) : c∗D > Bin(|S − S∗|, ĉ∗S−S∗ ,
δ

m
(

m
|S−S∗|

)

))

> δ − δ2.Proof The proof is 
onstru
tive and similar to the O

am's Razor tightness result. Inparti
ular, we show how to 
onstru
t a learning algorithm whi
h outputs 
lassi�ers that errindependently depending on the subset S′ used.Consider an input spa
e X = {0, 1}2m . Ea
h variable in the input spa
e xS′ 
an bethought of as indexing a unique subset S′ ⊆ S of the examples. In the rest of the proof, weindex variables by the subset they 
orrespond to.Draws from the distribution D 
an be made by �rst �ipping an unbiased 
oin to get
y = 1 with probability 0.5 and y = −1 with probability 0.5. The distribution on X 
onsistsof a set of independent values after 
onditioning on y. Choose

Pr(xS′ 6= y) = Bin(m,k,
δ

m
( m
|S−S′|

)

)

.Now, the learning algorithm A(S′) is very simple�it just outputs the 
lassi�er c(x) = xS′ .On the set S − S′, we have:
∀S′ Pr

S∼Dm

(

ĉS−S′ ≥
k

m

)

= 1 −
δ

m
( m
|S−S′|

) .Using independen
e, we get:
Pr

S∼Dm

(

∀S′ ĉS−S′ ≥
k

m

)

=
∏

S′

(

1 −
δ

m
( m
|S−S′|

)

)
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Figure 13: The sample 
ompression bound applied to the output of a support ve
tor ma
hinewith a Gaussian kernel. Here we use δ = 0.01Negating, we get:
Pr

S∼Dm

(

∀S′ ĉS−S′ <
k

m

)

= 1 −
∏

S′

(

1 −
δ

m
( m
|S−S′|

)

)and doing some algebra, we get the result.6.3 Appli
ation of the Sample Compression BoundOne obvious appli
ation of the Sample Compression bound is to support ve
tor ma
hines,sin
e the learned 
lassi�er is only dependent on the set of support ve
tors. If S′ is the setof support ve
tors then S − S′ is the set of nonsupport ve
tors. Unfortunately, it turns outthat this does not work so well, as observed in Figure 13.There are other less 
ommon learning algorithms for whi
h the sample 
ompressionbound works well. The Set Covering ma
hine (Mar
hand and Shawe-Taylor, 2001) has anasso
iated bound whi
h is a variant of the Sample Compression Bound.7. Dis
ussionHere, we dis
uss several aspe
ts and impli
ations of the presented bounds.242
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ti
al Predi
tion Theory for Classifi
ation7.1 Learning algorithm designEvery train set bound implies a learning algorithm: 
hoose the 
lassi�er whi
h minimizesthe true error bound. This sounds like a ri
h sour
e of learning algorithms, but there aresome severe 
aveats to that statement.1. It is important to note that the form of a train set bound does not imply that thisminimization is a good idea. Choosing between two 
lassi�ers based upon their trueerror bound implies a better worst-
ase bound on the true error. It does not implyan improved true error. In many situations, there is some other metri
 of 
omparison(su
h as train error) whi
h in fa
t 
reates better behavior.2. Another strong 
aveat is that, histori
ally, train set bounds have simply not beentight enough on real datasets for a nonva
uous appli
ation. This is 
hanging with newresults, but more progress is ne
essary.3. Often the optimization problem is simply not very tra
table. In addition to sample
omplexity, learning algorithms must be 
on
erned with run time and spa
e usage.7.2 PhilosophyTrain set bounds tea
h us about ways in whi
h veri�able learning is possible, a subje
twhi
h borders on philosophy. The train set bound presented here essentially shows that areasonable person will be 
onvin
ed of learning su

ess when a short-des
ription 
lassi�erdoes well on train set data. The results here do not imply that this is the only way to
onvin
ingly learn. In fa
t, the (sometimes large) looseness of the O

am's Razor boundsuggests that other methods for 
onvin
ing learning pro
esses exist. This observation ispartially shown by the other train set bounds whi
h are presented.7.3 Con
lusionThis introdu
tion to predi
tion theory 
overed two styles of bound: the test set bound andthe train set bound. There are two important lessons here:1. Test set bounds provide a better way to report error rates and 
on�den
e intervals onfuture error rates than some 
urrent methods.2. Train set bounds 
an provide useful information.It is important to note that the train set bound and test set bound te
hniques are notmutually ex
lusive. It is possible to use both simultaneously (Langford, 2002), and doing sois often desirable. Test set bounds are improved by the �free� information about the trainingerror and train set bounds be
ome appli
able, even when not always tight.A
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e of bounded 
omplexity. Typi
al theorems are of the form �after mexamples, all training errors are near to true errors�.The PAC learning model (Valiant, 1984) requires a polynomial time 
omplexity learningalgorithm and the assumption that the learning problem 
omes from some 
lass. Theoremsare of the form �after m examples learning will be a
hieved�.Both of these models 
an support stronger statements than the basi
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tion theorymodel presented here. Results from both of these models 
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