The Simplest model of Generalization

Model Definition

$$X = input space$$

$$Y = \{0, 1\}$$
 = output space

$$c: X \to Y = \text{classifier}$$

Model Assumption: All samples are drawn independently from some unknown distribution D(x,y).

 $S = (x, y)^m \sim D^m$ is a sample set.

Model: Derived quantities

The thing we want to know:

$$c_D \equiv \Pr_{x,y \sim D}(c(x) \neq y) = \text{true error}$$

Model: Derived quantities

The thing we want to know:

$$c_D \equiv \Pr_{x,y \sim D}(c(x) \neq y) = \text{true error}$$

The thing we have:

$$\widehat{c}_S \equiv \sum_{(x,y)\in S} I\left[c(x) \neq y\right]$$

= "train error", "test error", or "observed error", depending on context.

Model: Basic Observations

Q: What is the distribution of \hat{c}_S ?

A: A Binomial.

$$\Pr_{S \sim D^m} \left(\widehat{c}_S = k | c_D \right) = \begin{pmatrix} m \\ k \end{pmatrix} c_D^k (1 - c_D)^{m-k}$$

= probability of k heads (errors) in m flips of a coin with bias c_D .

Model: basic quantities

We use the cumulative:

$$Bin(m, k, c_D) = Pr_{S \sim D^m} (\hat{c}_S \leq k | c_D)$$
$$= \sum_{i=0}^k {m \choose i} c_D^i (1 - c_D)^{m-i}$$

= probability of observing k or fewer "heads" (errors) with m coins.

Model: basic quantities

Need confidence intervals \Rightarrow use the pivot of the cumulative instead

$$\overline{\text{Bin}}(m, k, \delta) = \max\{p : \text{Bin}(m, k, p) \ge \delta\}$$

= the largest true error such that the probability of observing k or fewer "heads" (errors) is at least δ

Test Set Bound: Theorem

Theorem: (Test Set Bound) For all classifiers c, for all D, for all $\delta \in (0,1]$:

$$\Pr_{S \sim D^m} \left(c_D \leq \overline{\mathsf{Bin}} \left(m, \widehat{c}_S, \delta \right) \right) \geq 1 - \delta$$

World's easiest proof: (by contradiction).

Assume Bin $(m, k, c_D) \ge \delta$ (which is true with probability $1 - \delta$).

Then by definition, $\overline{\text{Bin}}(m, \hat{c}_S, \delta) \geq c_D$

Occam's Razor Bound

Theorem: (Occam's Razor Bound) For all "priors" P(c) over the classifiers c, for all D, for all $\delta \in (0,1]$:

$$\Pr_{S \sim D^m} \left(\forall c : \ c_D \leq \overline{\mathsf{Bin}} \left(m, \widehat{c}_S, \delta P \left(c \right) \right) \right) \geq 1 - \delta$$

Corollary: For all P(c), for all D, for all $\delta \in (0,1]$:

$$\Pr_{S \sim D^m} \left(c_D \leq \frac{\widehat{c}_S}{m} + \sqrt{\frac{\ln \frac{1}{P(c)} + \ln \frac{1}{\delta}}{2m}} \right) \geq 1 - \delta$$

Test set bound \Rightarrow

$$orall c \Pr_{S \sim D^m} \left(c_D \leq \overline{\mathsf{Bin}} \left(m, \widehat{c}_S, \delta P(c) \right) \right) \geq 1 - \delta P(c)$$

Test set bound \Rightarrow

$$orall c \Pr_{S \sim D^m} \left(c_D \leq \overline{\mathsf{Bin}} \left(m, \widehat{c}_S, \delta P(c) \right) \right) \geq 1 - \delta P(c)$$

Negate to get:

$$\forall c \; \Pr_{S \sim D^m} \left(c_D > \overline{\mathsf{Bin}} \left(m, \widehat{c}_S, \delta P(c) \right) \right) < \delta P(c)$$

Test set bound \Rightarrow

$$\forall c \; \Pr_{S \sim D^m} \left(c_D \leq \overline{\mathsf{Bin}} \left(m, \widehat{c}_S, \delta P(c) \right) \right) \geq 1 - \delta P(c)$$

Negate to get:

$$\forall c \; \Pr_{S \sim D^m} \left(c_D > \overline{\mathsf{Bin}} \left(m, \widehat{c}_S, \delta P(c) \right) \right) < \delta P(c)$$

Apply union bound: $Pr(A \text{ or } B) \leq Pr(A) + Pr(B)$ repeatedly.

$$\Pr_{S \sim D^m} \left(\exists c : c_D > \overline{\text{Bin}} \left(m, \hat{c}_S, \delta P(c) \right) \right) < \sum_c \delta P(c) = \delta$$

Test set bound \Rightarrow

$$orall c \Pr_{S \sim D^m} \left(c_D \leq \overline{\mathsf{Bin}} \left(m, \widehat{c}_S, \delta P(c) \right) \right) \geq 1 - \delta P(c)$$

Negate to get:

$$orall c \Pr_{S \sim D^m} \left(c_D > \overline{\mathsf{Bin}} \left(m, \widehat{c}_S, \delta P(c) \right) \right) < \delta P(c)$$

Apply union bound: $Pr(A \text{ or } B) \leq Pr(A) + Pr(B)$ repeatedly.

$$\Pr_{S \sim D^m} \left(\exists c : c_D > \overline{\text{Bin}} \left(m, \hat{c}_S, \delta P(c) \right) \right) < \sum_c \delta P(c) = \delta$$

Negate again to get proof.