
The Simplest model of Generalization

Model Definition

X = input space

Y = {0,1} = output space

c : X → Y = classifier

Model Assumption: All samples are drawn independently from

some unknown distribution D(x, y).

S = (x, y)m ∼ Dm is a sample set.



Model: Derived quantities

The thing we want to know:

cD ≡ Pr
x,y∼D

(c(x) 6= y) = true error

“train error”, “test error”, or “observed error”, depending on con-

text.

(note: we identify the set S with the uniform distribution on S)
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cD ≡ Pr
x,y∼D

(c(x) 6= y) = true error

The thing we have:

ĉS ≡
∑

(x,y)∈S

I [c(x) 6= y]

= “train error”, “test error”, or “observed error”, depending on

context.



Model: Basic Observations

Q: What is the distribution of ĉS?

A: A Binomial.

Pr
S∼Dm

(ĉS = k| cD) =

(

m

k

)

ckD(1− cD)m−k

= probability of k heads (errors) in m flips of a coin with bias

cD.



Model: basic quantities

We use the cumulative:

Bin (m, k, cD) = PrS∼Dm (ĉS ≤ k| cD)

=
∑k

i=0

(

m

i

)

ciD(1− cD)m−i

= probability of observing k or fewer “heads” (errors) with m

coins.



Model: basic quantities

Need confidence intervals ⇒ use the pivot of the cumulative

instead

Bin (m, k, δ) = max {p : Bin (m, k, p) ≥ δ}

= the largest true error such that the probability of observing k

or fewer “heads” (errors) is at least δ



Test Set Bound: Theorem

Theorem: (Test Set Bound) For all classifiers c, for all D, for all

δ ∈ (0,1]:

Pr
S∼Dm

(

cD ≤ Bin (m, ĉS, δ)
)

≥ 1− δ

World’s easiest proof: (by contradiction).

Assume Bin (m, k, cD) ≥ δ (which is true with probability 1− δ).

Then by definition, Bin (m, ĉS, δ) ≥ cD



Occam’s Razor Bound

Theorem: (Occam’s Razor Bound) For all “priors” P(c) over the

classifiers c, for all D, for all δ ∈ (0,1]:

Pr
S∼Dm

(

∀c : cD ≤ Bin (m, ĉS, δP (c))
)

≥ 1− δ

Corollary: For all P(c), for all D, for all δ ∈ (0,1]:

Pr
S∼Dm
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Occam’s Razor Bound: Proof

Test set bound ⇒

∀c Pr
S∼Dm

(

cD ≤ Bin (m, ĉS, δP(c))
)

≥ 1− δP(c)

Negate to get:
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Apply union bound: Pr(A or B) � Pr(A) + Pr(B) repeatedly.
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ÆP (
) = Æ

Negate again to get proof.
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