
Logarithmic Time Prediction

John Langford @ Microsoft Research

Machine Learning the Future, April 24th

A Scenario
You have 1010 webpages and want to return the best
result in 100ms.

How do you do it?

Who is that?

The Multiclass Prediction Problem

Repeatedly
1 See x
2 Predict ŷ ∈ {1, ...,K}
3 See y

Goal: Find h(x) minimizing error rate:

Pr
(x ,y)∼D

(h(x) 6= y)

with h(x) fast.

The Multiclass Prediction Problem

Repeatedly
1 See x
2 Predict ŷ ∈ {1, ...,K}
3 See y

Goal: Find h(x) minimizing error rate:

Pr
(x ,y)∼D

(h(x) 6= y)

with h(x) fast.

Trick #1

K is small

Trick #2: A hierarchy exists

So use Trick #1 repeatedly.

Trick #2: A hierarchy exists

So use Trick #1 repeatedly.

Trick #3: Shared representation

Very helpful... but computation in the last layer can
still blow up.

Trick #3: Shared representation

Very helpful... but computation in the last layer can
still blow up.

Trick #4: “Structured Prediction”

But what if the structure is unclear?

Trick #4: “Structured Prediction”

But what if the structure is unclear?

Trick #5: GPU

10 Teraflops is great... yet still burns energy.

Trick #5: GPU

10 Teraflops is great... yet still burns energy.

Outline

1 Tricks
2 Static Structure
3 Dynamic Structure

How fast can we hope to go?

Theorem: There exists multiclass classification
problems where achieving 0 error rate requires
Ω(logK) time to train or test per example.

Proof: Pick y ∼ U(1, ...,K)

Any prediction algorithm outputting less than log2 K
bits loses with constant probability.

Any training algorithm reading an example requires
Ω(log2 K) time.

How fast can we hope to go?

Theorem: There exists multiclass classification
problems where achieving 0 error rate requires
Ω(logK) time to train or test per example.

Proof: Pick y ∼ U(1, ...,K)

Any prediction algorithm outputting less than log2 K
bits loses with constant probability.

Any training algorithm reading an example requires
Ω(log2 K) time.

How fast can we hope to go?

Theorem: There exists multiclass classification
problems where achieving 0 error rate requires
Ω(logK) time to train or test per example.

Proof: Pick y ∼ U(1, ...,K)

Any prediction algorithm outputting less than log2 K
bits loses with constant probability.

Any training algorithm reading an example requires
Ω(log2 K) time.

How fast can we hope to go?

Theorem: There exists multiclass classification
problems where achieving 0 error rate requires
Ω(logK) time to train or test per example.

Proof: Pick y ∼ U(1, ...,K)

Any prediction algorithm outputting less than log2 K
bits loses with constant probability.

Any training algorithm reading an example requires
Ω(log2 K) time.

Can we predict in time O(log2K)?

P(y=1) = .4

P(y=2) = .3

P(y=3) = .3

1

2 3

1 v {2,3}

2 v 3

P({2, 3}) > P(1)⇒ lose for divide and conquer

Can we predict in time O(log2K)?
P(y=1) = .4

P(y=2) = .3

P(y=3) = .3

1

2 3

1 v {2,3}

2 v 3

P({2, 3}) > P(1)⇒ lose for divide and conquer

Filter Trees [BLR09]
P(y=1) = .4

P(y=2) = .3

P(y=3) = .3

1

2 3

1 v {2,3}

2 v 3

1 Learn 2v3 first
2 Throw away all error examples
3 Learn 1 v Survivors

Theorem: For all multiclass problems, for all binary
classifiers, Multiclass Regret ≤ Average Binary
Regret * log(K)

What about with costs?

Cost-sensitive multi-class classification
Distribution D over X×[0, 1]k , where a vector in
[0, 1]k specifies the cost of each of the k choices.

Find a classifier h : X → {1, . . . , k} minimizing the
expected cost

cost(h,D) = E(x ,c)∼D [ch(x)].

Generalization to the Cost-sensitive Case
To train a non-leaf node on example (x , c1, . . . , ck):

�
�
�
�
�
�

Q
Q

Q
Q

Q
Q

a bt
Let y =

{
left if ca ≤ cb

right otherwise

Train on (x , y) with importance weight |ca − cb|.

Distribution induced at the node
Draw a cost-sensitive example from D, create an
importance weighted sample as above.

Analysis

01 regret:
reg01(h,D) = PrD(h(x) 6= y)−minh′ PrD(h′(x) 6= y)
CS regret:
regCS(h,D) = E(x ,y)∼D [ch(x)]−minh′ E(x ,y)∼D [ch′(x)]

Theorem
For all CSMC problems and node classifiers,

regCS(hFT ,D) ≤ A(reg01(h,DFT))EDFT

∑
nodes n

in

What’s multiclass special case? Can you do better?

Analysis

01 regret:
reg01(h,D) = PrD(h(x) 6= y)−minh′ PrD(h′(x) 6= y)
CS regret:
regCS(h,D) = E(x ,y)∼D [ch(x)]−minh′ E(x ,y)∼D [ch′(x)]

Theorem
For all CSMC problems and node classifiers,

regCS(hFT ,D) ≤ A(reg01(h,DFT))EDFT

∑
nodes n

in

What’s multiclass special case?

Can you do better?

Analysis

01 regret:
reg01(h,D) = PrD(h(x) 6= y)−minh′ PrD(h′(x) 6= y)
CS regret:
regCS(h,D) = E(x ,y)∼D [ch(x)]−minh′ E(x ,y)∼D [ch′(x)]

Theorem
For all CSMC problems and node classifiers,

regCS(hFT ,D) ≤ A(reg01(h,DFT))EDFT

∑
nodes n

in

What’s multiclass special case? Can you do better?

Error Correcting Tournament

Once an example loses,
it moves to the next
tournament. Once an
example has lost e
times, it is eliminated.

The e winners from the
first phase compete in
the final single
elimination tournament.
To win in round i , each
player must defeat its
opponent 2i−1 times.

2 3 4 5 6 7 8

Final W
inner

1

e = 3

Summary of Multiclass results

Filter Tree Error Correcting Tour.
MC Comp. log k O(log k)
MC Regret log k 5.5
CS Train k O(k log k)
CS Test log k O(log k)
CS Regret min{k2 ,

∑
n in} ??

Contextual Bandits in Logarithmic time

Contextual Bandit Classification
Distribution D over X × [0, 1]k , where a vector in
[0, 1]k specifies the cost of each of the k choices.

Find a classifier h : X → {1, . . . , k} minimizing the
expected cost

cost(h,D) = E(x ,c)∼D [ch(x)].

given only observations (x , a, ca, pa)∗.

The Offset Tree for k = 2, p = 0.5

Suppose k = 2 for the moment and let a ∈ {−1, 1}.
Create binary importance weighted samples according
to: (

x , sign
(
a

(
1
2
− ca

))
,

∣∣∣∣12 − ca

∣∣∣∣)
x = context
sign

(
a
(1

2 − ca
))

= label∣∣1
2 − ca

∣∣ = importance weight

Denoising Binary Importance Weighting

Theorem
For all Contextual Bandit distributions D with k = 2,
for all binary classifiers b:

policy regret ≤ reg0/1(b,DOT).

Offset reduces noise in induced problem.

1
2 = minimax value of the median reward. Plugging
in the actual median is always better.

Denoising for k > 2 arms

1 2 3 4 5 6 7

1 vs 2 3 vs 4 5 vs 6

winner of 1 vs 2 vs winner of 3 vs 4 7 vs winner of 5 vs 6

winners vs winners

Use the same construction at each node. Internal
nodes only get an example if all leaf-wards nodes
agree with the label (Filtering trick).

Denoising with k arms

DOT = Induced Binary classification problem
b = the classifier which predicts based on both x and
the choice of binary problem according to DOT .

Theorem
For all k-choice D, binary classifiers b:

policy regret ≤ (k − 1) reg0/1(b,DOT).

A Comparison of Approaches

Algorithm Policy Regret Bound

Argmax
√

2k reg0/1(s,DAR)

Importance Weighted 4k reg0/1(b,DIW)
Offset Tree (k − 1) reg0/1(b,DOT)

How do you expect things to work, experimentally?

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
ffs

et
 T

re
e

Lo
ss

Argmax Loss

M5P
REPTree

y=x

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

O
ffs

et
 T

re
e

Importance weighting

y=x

Compare with Double Robust

 0.2

 0.4

 0.6

 0.8

ec
ol

i

gl
as

s

le
tte

r

op
td

ig
its

pa
ge

-b
lo

ck
s

pe
nd

ig
its

sa
tim

ag
e

ve
hi

cl
e

ye
as

t

C
la

ss
ifi

ca
tio

n
E

rr
or

IPS (Filter Tree)
DR (Filter Tree)

Offset Tree

DR is exponentially slower, but often a bit better.

Outline

1 Tricks
2 Static Structure
3 Dynamic Structure

How do you learn structure?

Not all partitions are equally difficult.
Compare {1, 7}v{3, 8} to {1, 8}v{3, 7}
What is better?

[BWG10]: Better to confuse near leaves than near
root.
Intuition: the root predictor tends to be
overconstrained while the leafwards predictors are less
constrained.

How do you learn structure?

Not all partitions are equally difficult.
Compare {1, 7}v{3, 8} to {1, 8}v{3, 7}
What is better?

[BWG10]: Better to confuse near leaves than near
root.
Intuition: the root predictor tends to be
overconstrained while the leafwards predictors are less
constrained.

The Partitioning Problem [CL14]

Given a set of n examples each with one of K labels,
find a partitioner h that maximizes:

Ex ,y |Pr(h(x) = 1, y)− Pr(h(x) = 1)Pr(y)|

where Xy is the set of x associated with y .

Nonconvex for any symmetric hypothesis class (ouch)

The Partitioning Problem [CL14]

Given a set of n examples each with one of K labels,
find a partitioner h that maximizes:

Ex

∑
y

Pr(y)|Pr(h(x) = 1|x ∈ Xy)− Pr(h(x) = 1)|

where Xy is the set of x associated with y .

Nonconvex for any symmetric hypothesis class (ouch)

The Partitioning Problem [CL14]

Given a set of n examples each with one of K labels,
find a partitioner h that maximizes:

Ex

∑
y

Pr(y)|Pr(h(x) = 1|x ∈ Xy)− Pr(h(x) = 1)|

where Xy is the set of x associated with y .

Nonconvex for any symmetric hypothesis class (ouch)

Bottom Up doesn’t work

1 2 3

Suppose you use linear representations.

Suppose you first build a 1v3 predictor.
Suppose you then build a 2v{1v3} predictor.
You lose.

Bottom Up doesn’t work

1 2 3

Suppose you use linear representations.
Suppose you first build a 1v3 predictor.

Suppose you then build a 2v{1v3} predictor.
You lose.

Bottom Up doesn’t work

1 2 3

Suppose you use linear representations.
Suppose you first build a 1v3 predictor.
Suppose you then build a 2v{1v3} predictor.
You lose.

How do you train to partition?

Input: Example (x , y); Node n

(Ĥleft, Ĥ
′
left)

.
= entropy(n.left, y)

(Ĥright, Ĥ
′
right)

.
= entropy(n.right, y)

Where entropy = Empirical Shannon entropy
without and with y added.
Ĥ|left

.
= n.left.total

n.total Ĥ ′left + n.right.total
n.total Ĥright

Ĥ|right
.

= n.left.total
n.total Ĥleft + n.right.total

n.total Ĥ ′right

∆̂Hpost ← Ĥ|left − Ĥ|right

Learnn(x , |∆̂Hpost|, sign(∆̂Hpost))

How do you train to partition?

Input: Example (x , y); Node n
(Ĥleft, Ĥ

′
left)

.
= entropy(n.left, y)

(Ĥright, Ĥ
′
right)

.
= entropy(n.right, y)

Where entropy = Empirical Shannon entropy
without and with y added.

Ĥ|left
.

= n.left.total
n.total Ĥ ′left + n.right.total

n.total Ĥright

Ĥ|right
.

= n.left.total
n.total Ĥleft + n.right.total

n.total Ĥ ′right

∆̂Hpost ← Ĥ|left − Ĥ|right

Learnn(x , |∆̂Hpost|, sign(∆̂Hpost))

How do you train to partition?

Input: Example (x , y); Node n
(Ĥleft, Ĥ

′
left)

.
= entropy(n.left, y)

(Ĥright, Ĥ
′
right)

.
= entropy(n.right, y)

Where entropy = Empirical Shannon entropy
without and with y added.
Ĥ|left

.
= n.left.total

n.total Ĥ ′left + n.right.total
n.total Ĥright

Ĥ|right
.

= n.left.total
n.total Ĥleft + n.right.total

n.total Ĥ ′right

∆̂Hpost ← Ĥ|left − Ĥ|right

Learnn(x , |∆̂Hpost|, sign(∆̂Hpost))

How do you train to partition?

Input: Example (x , y); Node n
(Ĥleft, Ĥ

′
left)

.
= entropy(n.left, y)

(Ĥright, Ĥ
′
right)

.
= entropy(n.right, y)

Where entropy = Empirical Shannon entropy
without and with y added.
Ĥ|left

.
= n.left.total

n.total Ĥ ′left + n.right.total
n.total Ĥright

Ĥ|right
.

= n.left.total
n.total Ĥleft + n.right.total

n.total Ĥ ′right

∆̂Hpost ← Ĥ|left − Ĥ|right

Learnn(x , |∆̂Hpost|, sign(∆̂Hpost))

How do you train to partition?

Input: Example (x , y); Node n
(Ĥleft, Ĥ

′
left)

.
= entropy(n.left, y)

(Ĥright, Ĥ
′
right)

.
= entropy(n.right, y)

Where entropy = Empirical Shannon entropy
without and with y added.
Ĥ|left

.
= n.left.total

n.total Ĥ ′left + n.right.total
n.total Ĥright

Ĥ|right
.

= n.left.total
n.total Ĥleft + n.right.total

n.total Ĥ ′right

∆̂Hpost ← Ĥ|left − Ĥ|right

Learnn(x , |∆̂Hpost|, sign(∆̂Hpost))

Important Optimizations

1 Do not descend to a pure leaf. Halt early and
train one-against-some classifiers for each label.

2 Use large deviation bound on recall to control
halting.

3 Add node id features as you descend the tree.

A boosting theorem

γ-Weak Learning Assumption
For all distributions D(x , y) a learning algorithm
using examples (x , y)∗ IID from D finds a binary
classifier c : X → {l , r} satisfying

plHl + prHr ≤ Hn − γ

Theorem
If γ-Weak Learning holds, then after t splits the
multiclass error rate ε of the tree is bounded by:

ε ≤ H1 − γ ln(t + 1)

where H1 is the class label distribution entropy.

A boosting theorem

γ-Weak Learning Assumption
For all distributions D(x , y) a learning algorithm
using examples (x , y)∗ IID from D finds a binary
classifier c : X → {l , r} satisfying

plHl + prHr ≤ Hn − γ

Theorem
If γ-Weak Learning holds, then after t splits the
multiclass error rate ε of the tree is bounded by:

ε ≤ H1 − γ ln(t + 1)

where H1 is the class label distribution entropy.

Accuracy vs. LOMtree, OAA

-4

 0

 4

 8

 12

ALOI
Im

agenet

ODP

D
el

ta
 T

es
t

E
rr

o
r

(%
)

Fr
o
m

 O
A
A

Statistical Performance

LOMTree
Recall Tree

Online performance (LTCB)

 70

 75

 80

 85

 90

 95

 100

 10000 100000 1x106 1x107 1x108

A
ve

ra
g
e

C
u
m

u
la

ti
ve

Pr
og

re
ss

iv
e

A
cc

u
ra

cy
 (

%
)

Examples

in-order
permuted

With/without path features (ALOI)

 10

 15

 20

 25

 30

 35

 40

 1 10 100

Te
st

 E
rr

or
 (

%
)

Candidate Set Size

with path features
without path features

Can we predict in time O(log2K)?

What is the right way to achieve consistency and
dynamic partition?

How can you balance representation complexity and
sample complexity?

Can we predict in time O(log2K)?

What is the right way to achieve consistency and
dynamic partition?

How can you balance representation complexity and
sample complexity?

Can we predict in time O(log2K)?

What is the right way to achieve consistency and
dynamic partition?

How can you balance representation complexity and
sample complexity?

Bibliography: Static

Alina Beygelzimer, John Langford, Pradeep
Ravikumar, Error-Correcting Tournaments, ALT
2009.

Alina Beygelzimer, John Langford, Error-Correcting
Tournaments, KDD 2009.

Bibliography: Dynamic

Samy Bengio, Jason Weston, David Grangier, Label
embedding trees for large multi-class tasks, NIPS
2010.

Anna Choromanska, John Langford, Logarithmic
Time Online Multiclass prediction, NIPS 2015.

Hal Daumé III, Nikos Karampatziakis, John Langford,
Paul Mineiro, Logarithmic Time One-Against-Some,
https://arxiv.org/abs/1606.04988

