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A Scenario
You have 1010 webpages and want to return the best
result in 100ms.

How do you do it?



Who is that?



The Multiclass Prediction Problem

Repeatedly
1 See x
2 Predict ŷ ∈ {1, ...,K}
3 See y

Goal: Find h(x) minimizing error rate:

Pr
(x ,y)∼D

(h(x) 6= y)

with h(x) fast.
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Trick #1

K is small



Trick #2: A hierarchy exists

So use Trick #1 repeatedly.
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Trick #3: Shared representation

Very helpful... but computation in the last layer can
still blow up.
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Trick #5: GPU

10 Teraflops is great... yet still burns energy.
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How fast can we hope to go?

Theorem: There exists multiclass classification
problems where achieving 0 error rate requires
Ω(logK ) time to train or test per example.

Proof: Pick y ∼ U(1, ...,K )

Any prediction algorithm outputting less than log2 K
bits loses with constant probability.

Any training algorithm reading an example requires
Ω(log2 K ) time.
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Can we predict in time O(log2K )?

P(y=1) = .4

P(y=2) = .3

P(y=3) = .3

1

2 3

1 v {2,3}

2 v 3

P({2, 3}) > P(1)⇒ lose for divide and conquer
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Filter Trees [BLR09]
P(y=1) = .4

P(y=2) = .3

P(y=3) = .3

1

2 3

1 v {2,3}

2 v 3

1 Learn 2v3 first
2 Throw away all error examples
3 Learn 1 v Survivors

Theorem: For all multiclass problems, for all binary
classifiers, Multiclass Regret ≤ Average Binary
Regret * log(K )



What about with costs?

Cost-sensitive multi-class classification
Distribution D over X×[0, 1]k , where a vector in
[0, 1]k specifies the cost of each of the k choices.

Find a classifier h : X → {1, . . . , k} minimizing the
expected cost

cost(h,D) = E(x ,c)∼D [ch(x)].



Generalization to the Cost-sensitive Case
To train a non-leaf node on example (x , c1, . . . , ck):
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a bt
Let y =

{
left if ca ≤ cb

right otherwise

Train on (x , y) with importance weight |ca − cb|.

Distribution induced at the node
Draw a cost-sensitive example from D, create an
importance weighted sample as above.



Analysis

01 regret:
reg01(h,D) = PrD(h(x) 6= y)−minh′ PrD(h′(x) 6= y)
CS regret:
regCS(h,D) = E(x ,y)∼D [ch(x)]−minh′ E(x ,y)∼D [ch′(x)]

Theorem
For all CSMC problems and node classifiers,

regCS(hFT ,D) ≤ A(reg01(h,DFT ))EDFT

∑
nodes n

in

What’s multiclass special case? Can you do better?
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Error Correcting Tournament

Once an example loses,
it moves to the next
tournament. Once an
example has lost e
times, it is eliminated.

The e winners from the
first phase compete in
the final single
elimination tournament.
To win in round i , each
player must defeat its
opponent 2i−1 times.

2 3 4 5 6 7 8

Final W
inner

1

e = 3



Summary of Multiclass results

Filter Tree Error Correcting Tour.
MC Comp. log k O(log k)
MC Regret log k 5.5
CS Train k O(k log k)
CS Test log k O(log k)
CS Regret min{k2 ,

∑
n in} ??



Contextual Bandits in Logarithmic time

Contextual Bandit Classification
Distribution D over X × [0, 1]k , where a vector in
[0, 1]k specifies the cost of each of the k choices.

Find a classifier h : X → {1, . . . , k} minimizing the
expected cost

cost(h,D) = E(x ,c)∼D [ch(x)].

given only observations (x , a, ca, pa)∗.



The Offset Tree for k = 2, p = 0.5

Suppose k = 2 for the moment and let a ∈ {−1, 1}.
Create binary importance weighted samples according
to: (

x , sign
(
a

(
1
2
− ca

))
,

∣∣∣∣12 − ca

∣∣∣∣)
x = context
sign

(
a
(1

2 − ca
))

= label∣∣1
2 − ca

∣∣ = importance weight



Denoising Binary Importance Weighting

Theorem
For all Contextual Bandit distributions D with k = 2,
for all binary classifiers b:

policy regret ≤ reg0/1(b,DOT ).

Offset reduces noise in induced problem.

1
2 = minimax value of the median reward. Plugging
in the actual median is always better.



Denoising for k > 2 arms

1 2 3 4 5 6 7

1 vs 2 3 vs 4 5 vs 6

winner of 1 vs 2 vs winner of 3 vs 4 7 vs winner of 5 vs 6

winners vs winners

Use the same construction at each node. Internal
nodes only get an example if all leaf-wards nodes
agree with the label (Filtering trick).



Denoising with k arms

DOT = Induced Binary classification problem
b = the classifier which predicts based on both x and
the choice of binary problem according to DOT .

Theorem
For all k-choice D, binary classifiers b:

policy regret ≤ (k − 1) reg0/1(b,DOT ).



A Comparison of Approaches

Algorithm Policy Regret Bound

Argmax
√

2k reg0/1(s,DAR)

Importance Weighted 4k reg0/1(b,DIW )
Offset Tree (k − 1) reg0/1(b,DOT )

How do you expect things to work, experimentally?
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Compare with Double Robust
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Offset Tree

DR is exponentially slower, but often a bit better.
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How do you learn structure?

Not all partitions are equally difficult.
Compare {1, 7}v{3, 8} to {1, 8}v{3, 7}
What is better?

[BWG10]: Better to confuse near leaves than near
root.
Intuition: the root predictor tends to be
overconstrained while the leafwards predictors are less
constrained.
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The Partitioning Problem [CL14]

Given a set of n examples each with one of K labels,
find a partitioner h that maximizes:

Ex ,y |Pr(h(x) = 1, y)− Pr(h(x) = 1)Pr(y)|

where Xy is the set of x associated with y .

Nonconvex for any symmetric hypothesis class (ouch)
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Bottom Up doesn’t work

1 2 3

Suppose you use linear representations.

Suppose you first build a 1v3 predictor.
Suppose you then build a 2v{1v3} predictor.
You lose.
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How do you train to partition?

Input: Example (x , y); Node n

(Ĥleft, Ĥ
′
left)

.
= entropy(n.left, y)

(Ĥright, Ĥ
′
right)

.
= entropy(n.right, y)

Where entropy = Empirical Shannon entropy
without and with y added.
Ĥ|left

.
= n.left.total

n.total Ĥ ′left + n.right.total
n.total Ĥright

Ĥ|right
.

= n.left.total
n.total Ĥleft + n.right.total

n.total Ĥ ′right

∆̂Hpost ← Ĥ|left − Ĥ|right

Learnn(x , |∆̂Hpost|, sign(∆̂Hpost))
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Ĥ|right
.

= n.left.total
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n.total Ĥleft + n.right.total

n.total Ĥ ′right
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Important Optimizations

1 Do not descend to a pure leaf. Halt early and
train one-against-some classifiers for each label.

2 Use large deviation bound on recall to control
halting.

3 Add node id features as you descend the tree.



A boosting theorem

γ-Weak Learning Assumption
For all distributions D(x , y) a learning algorithm
using examples (x , y)∗ IID from D finds a binary
classifier c : X → {l , r} satisfying

plHl + prHr ≤ Hn − γ

Theorem
If γ-Weak Learning holds, then after t splits the
multiclass error rate ε of the tree is bounded by:

ε ≤ H1 − γ ln(t + 1)

where H1 is the class label distribution entropy.
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Accuracy vs. LOMtree, OAA
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Online performance (LTCB)
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With/without path features (ALOI)
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Can we predict in time O(log2K )?

What is the right way to achieve consistency and
dynamic partition?

How can you balance representation complexity and
sample complexity?
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