
Allreduce for Parallel Learning

John Langford, Microsoft Resarch, NYC

May 8, 2017

Applying for a fellowship in 1997

Interviewer: So, what do you want to do?
John: I’d like to solve AI.
I: How?
J: I want to use parallel learning algorithms to create fantastic
learning machines!

I: You fool! The only thing parallel machines are good for is
computational windtunnels!
The worst part: he had a point.

Applying for a fellowship in 1997

Interviewer: So, what do you want to do?
John: I’d like to solve AI.
I: How?
J: I want to use parallel learning algorithms to create fantastic
learning machines!
I: You fool! The only thing parallel machines are good for is
computational windtunnels!

The worst part: he had a point.

Applying for a fellowship in 1997

Interviewer: So, what do you want to do?
John: I’d like to solve AI.
I: How?
J: I want to use parallel learning algorithms to create fantastic
learning machines!
I: You fool! The only thing parallel machines are good for is
computational windtunnels!
The worst part: he had a point.

Why is it hard?

Everyone’s first instinct: Try using parameter servers.

Model

Shard

Model

Shard

Model

Shard

Shard

Data

Shard

Data

Shard

Data

Shard

Data

Shard

Data

1 Hsu, Karampatziakis, Langford, and Smola, “Parallel Online
Learning”, https://arxiv.org/abs/1103.4204

2 Dean et al, “Large scale Deep Distributed Networks”, NIPS
2012.

Big problems in practice:
1 Overwhelmingly inefficient. Best case: marginally faster with

x100 electricity.
2 Nondeterministic. Minor bugs incredibly difficult to track.

Why is it hard?

Everyone’s first instinct: Try using parameter servers.

Model

Shard

Model

Shard

Model

Shard

Shard

Data

Shard

Data

Shard

Data

Shard

Data

Shard

Data

1 Hsu, Karampatziakis, Langford, and Smola, “Parallel Online
Learning”, https://arxiv.org/abs/1103.4204

2 Dean et al, “Large scale Deep Distributed Networks”, NIPS
2012.

Big problems in practice:
1 Overwhelmingly inefficient. Best case: marginally faster with

x100 electricity.
2 Nondeterministic. Minor bugs incredibly difficult to track.

Terascale Linear Learning ACDL11

Given 2.1 Terafeatures of data, how can you learn a good linear
predictor fw (x) =

∑
i wixi?

17B Examples
16M parameters
1K nodes
How long does it take?

70 minutes = 500M features/second: faster than the IO
bandwidth of a single machine⇒ faster than all possible single
machine linear learning algorithms.

Terascale Linear Learning ACDL11

Given 2.1 Terafeatures of data, how can you learn a good linear
predictor fw (x) =

∑
i wixi?

17B Examples
16M parameters
1K nodes
How long does it take?

70 minutes = 500M features/second: faster than the IO
bandwidth of a single machine⇒ faster than all possible single
machine linear learning algorithms.

Terascale Linear Learning ACDL11

Given 2.1 Terafeatures of data, how can you learn a good linear
predictor fw (x) =

∑
i wixi?

17B Examples
16M parameters
1K nodes
How long does it take?

70 minutes = 500M features/second: faster than the IO
bandwidth of a single machine⇒ faster than all possible single
machine linear learning algorithms.

MPI-style AllReduce

7

2 3 4

6

Allreduce initial state

5

1

AllReduce = Reduce+Broadcast
Properties:

1 Easily pipelined so no latency concerns.

2 Bandwidth ≤ 6n.

3 No need to rewrite code!

MPI-style AllReduce

2828 28

Allreduce final state

28 28 28 28

AllReduce = Reduce+Broadcast
Properties:

1 Easily pipelined so no latency concerns.

2 Bandwidth ≤ 6n.

3 No need to rewrite code!

MPI-style AllReduce

2 3 4

6

7

5

1

Create Binary Tree

AllReduce = Reduce+Broadcast
Properties:

1 Easily pipelined so no latency concerns.

2 Bandwidth ≤ 6n.

3 No need to rewrite code!

MPI-style AllReduce

2 3 4

7

8

1

13

Reducing, step 1

AllReduce = Reduce+Broadcast
Properties:

1 Easily pipelined so no latency concerns.

2 Bandwidth ≤ 6n.

3 No need to rewrite code!

MPI-style AllReduce

2 3 4

8

1

13

Reducing, step 2

28

AllReduce = Reduce+Broadcast
Properties:

1 Easily pipelined so no latency concerns.

2 Bandwidth ≤ 6n.

3 No need to rewrite code!

MPI-style AllReduce

2 3 41

28

Broadcast, step 1

28 28

AllReduce = Reduce+Broadcast
Properties:

1 Easily pipelined so no latency concerns.

2 Bandwidth ≤ 6n.

3 No need to rewrite code!

MPI-style AllReduce

28

28 28

Allreduce final state

28 28 28 28

AllReduce = Reduce+Broadcast

Properties:

1 Easily pipelined so no latency concerns.

2 Bandwidth ≤ 6n.

3 No need to rewrite code!

MPI-style AllReduce

28

28 28

Allreduce final state

28 28 28 28

AllReduce = Reduce+Broadcast
Properties:

1 Easily pipelined so no latency concerns.

2 Bandwidth ≤ 6n.

3 No need to rewrite code!

An Example Algorithm: Weight averaging

n = AllReduce(1)
While (pass number < max)

1 While (examples left)
1 Do online update.

2 AllReduce(weights)

3 For each weight w ← w/n

Other algorithms implemented:

1 Nonuniform averaging for online learning

2 Conjugate Gradient

3 LBFGS

An Example Algorithm: Weight averaging

n = AllReduce(1)
While (pass number < max)

1 While (examples left)
1 Do online update.

2 AllReduce(weights)

3 For each weight w ← w/n

Other algorithms implemented:

1 Nonuniform averaging for online learning

2 Conjugate Gradient

3 LBFGS

Hadoop AllReduce

1

Data
Program

“Map” job moves program to data.

2 Delayed initialization: Most failures are disk failures. First
read (and cache) all data, before initializing allreduce. Failures
autorestart on different node with identical data.

3 Speculative execution: In a busy cluster, one node is often
slow. Hadoop can speculatively start additional mappers. We
use the first to finish reading all data once.

The net effect: Reliable execution out to perhaps 10K node-hours.

Hadoop AllReduce

1

Data
Program

“Map” job moves program to data.

2 Delayed initialization: Most failures are disk failures. First
read (and cache) all data, before initializing allreduce. Failures
autorestart on different node with identical data.

3 Speculative execution: In a busy cluster, one node is often
slow. Hadoop can speculatively start additional mappers. We
use the first to finish reading all data once.

The net effect: Reliable execution out to perhaps 10K node-hours.

Hadoop AllReduce

1

Data
Program

“Map” job moves program to data.

2 Delayed initialization: Most failures are disk failures. First
read (and cache) all data, before initializing allreduce. Failures
autorestart on different node with identical data.

3 Speculative execution: In a busy cluster, one node is often
slow. Hadoop can speculatively start additional mappers. We
use the first to finish reading all data once.

The net effect: Reliable execution out to perhaps 10K node-hours.

Hadoop AllReduce

1

Data
Program

“Map” job moves program to data.

2 Delayed initialization: Most failures are disk failures. First
read (and cache) all data, before initializing allreduce. Failures
autorestart on different node with identical data.

3 Speculative execution: In a busy cluster, one node is often
slow. Hadoop can speculatively start additional mappers. We
use the first to finish reading all data once.

The net effect: Reliable execution out to perhaps 10K node-hours.

Robustness & Speedup

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 10 20 30 40 50 60 70 80 90 100

S
pe

ed
up

Nodes

Speed per method

Average_10
Min_10

Max_10
linear

Splice Site Recognition

0 10 20 30 40 50
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Iteration

a
u
P

R
C

Online

L−BFGS w/ 5 online passes
L−BFGS w/ 1 online pass

L−BFGS

0 5 10 15 20

0.466

0.468

0.47

0.472

0.474

0.476

0.478

0.48

0.482

0.484

Iteration

a
u
P

R
C

Online

L−BFGS w/ 5 online passes
L−BFGS w/ 1 online pass

L−BFGS

Splice Site Recognition

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Effective number of passes over data

au
P

R
C

L−BFGS w/ one online pass
Zinkevich et al.
Dekel et al.

What about parallel deep learning?

Needs to work with a GPU.

GPU Allreduce optimization 1: Minibatch gradient descent

GPUs have much more computation than communication.

Give every GPU n examples and compute average gradient on
them. Synchronize Gradient

GPU Allreduce optimization 1: Minibatch gradient descent

GPUs have much more computation than communication.

Give every GPU n examples and compute average gradient on
them. Synchronize Gradient

GPU Allreduce optimization 1: Half-Batch

Do communication asynchronous to computation.

1 minibatch communicates while the other computes on older
parameters.

GPU Allreduce optimization 1: Half-Batch

Do communication asynchronous to computation.

1 minibatch communicates while the other computes on older
parameters.

GPU Allreduce optimization 1: 1-bit SGD

Discretize the gradient to 1 bit before communicating off GPU.

Keep and accumulate discretization errors on GPU.

GPU Allreduce optimization 1: 1-bit SGD

Discretize the gradient to 1 bit before communicating off GPU.

Keep and accumulate discretization errors on GPU.

GPU Allreduce Optimization 2: Ring Allreduce

Every node masters a subset and messages travel in a ring.

1 Downside: latency increase?

2 Upside: perfectly efficient synchronization

Bibliography

L-BFGS J. Nocedal, Updating Quasi-Newton Matrices with Limited
Storage, Mathematics of Computation 35:773–782, 1980.

grad sum C. Teo, Q. Le, A. Smola, V. Vishwanathan, A Scalable
Modular Convex Solver for Regularized Risk Minimization,
KDD 2007.

Rings 1 Pitch Patarasuk and Xin Yuan, Bandwidth Optimal all-reduce
algorithms for clusters of workstations, JPDC 2009.

avg. G. Mann et al. Efficient large-scale distributed training of
conditional maximum entropy models, NIPS 2009.

ov. avg M. Zinkevich, M. Weimar, A. Smola, and L. Li, Parallelized
Stochastic Gradient Descent, NIPS 2010.

P. online D. Hsu, N. Karampatziakis, J. Langford, and A. Smola,
Parallel Online Learning, in SUML 2010.

D. Mini O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, Optimal
Distributed Online Predictions Using Minibatch, JMLR 2012.

Bibliography II

Tera Alekh Agarwal, Olivier Chapelle, Miroslav Dudik, John
Langford A Reliable Effective Terascale Linear Learning
System, Arxiv 2011/JMLR 2014.

DistBelief Dean et al, Large Scale Distributed Deep Networks, NIPS
2012.

One-bit Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu,
1-Bit Stochastic Gradient Descent and its Application to
Data-Parallel Distributed Training of Speech DNNs,
Interspeech 2014.

Rings 2 Amodei et al, Deep Speech 2: End-to-End Speech
Recognition in English and Mandarin, ICML 2016.

