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Applying for a fellowship in 1997

Interviewer: So, what do you want to do?
John: I’d like to solve AI.
I: How?
J: I want to use parallel learning algorithms to create fantastic
learning machines!

I: You fool! The only thing parallel machines are good for is
computational windtunnels!
The worst part: he had a point.
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Why is it hard?

Everyone’s first instinct: Try using parameter servers.
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1 Hsu, Karampatziakis, Langford, and Smola, “Parallel Online
Learning”, https://arxiv.org/abs/1103.4204

2 Dean et al, “Large scale Deep Distributed Networks”, NIPS
2012.

Big problems in practice:
1 Overwhelmingly inefficient. Best case: marginally faster with

x100 electricity.
2 Nondeterministic. Minor bugs incredibly difficult to track.
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Terascale Linear Learning ACDL11

Given 2.1 Terafeatures of data, how can you learn a good linear
predictor fw (x) =

∑
i wixi?

17B Examples
16M parameters
1K nodes
How long does it take?

70 minutes = 500M features/second: faster than the IO
bandwidth of a single machine⇒ faster than all possible single
machine linear learning algorithms.
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MPI-style AllReduce
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Properties:

1 Easily pipelined so no latency concerns.

2 Bandwidth ≤ 6n.

3 No need to rewrite code!
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An Example Algorithm: Weight averaging

n = AllReduce(1)
While (pass number < max)

1 While (examples left)
1 Do online update.

2 AllReduce(weights)

3 For each weight w ← w/n

Other algorithms implemented:

1 Nonuniform averaging for online learning

2 Conjugate Gradient

3 LBFGS
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Hadoop AllReduce

1

Data
Program

“Map” job moves program to data.

2 Delayed initialization: Most failures are disk failures. First
read (and cache) all data, before initializing allreduce. Failures
autorestart on different node with identical data.

3 Speculative execution: In a busy cluster, one node is often
slow. Hadoop can speculatively start additional mappers. We
use the first to finish reading all data once.

The net effect: Reliable execution out to perhaps 10K node-hours.
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Robustness & Speedup
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Splice Site Recognition
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Splice Site Recognition
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What about parallel deep learning?

Needs to work with a GPU.



GPU Allreduce optimization 1: Minibatch gradient descent

GPUs have much more computation than communication.

Give every GPU n examples and compute average gradient on
them. Synchronize Gradient
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GPU Allreduce optimization 1: Half-Batch

Do communication asynchronous to computation.

1 minibatch communicates while the other computes on older
parameters.



GPU Allreduce optimization 1: Half-Batch

Do communication asynchronous to computation.

1 minibatch communicates while the other computes on older
parameters.



GPU Allreduce optimization 1: 1-bit SGD

Discretize the gradient to 1 bit before communicating off GPU.

Keep and accumulate discretization errors on GPU.
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GPU Allreduce Optimization 2: Ring Allreduce

Every node masters a subset and messages travel in a ring.

1 Downside: latency increase?

2 Upside: perfectly efficient synchronization
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